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Correction du Devoir Maison 5
Equations différentielle, matrices, analyse

asymptotique

Du mardi 06 janvier

Problème I - Equations différentielles
L’objectif de ce problème est de déterminer l’ensemble des solutions de l’équation suivante sur R :

(E) x2y′′ + 3 |x| y′ + 3y = 1 + 6x3.

Partie 1 : Le v de la victoire

On considère l’équation suivante d’inconnue y une fonction deux fois dérivable sur R∗
− :

(E−) ∀x ∈ R∗
−, x2y′′ + 3 |x| y′ + 3y = 1 + 6x3.

On définit également l’équation d’inconnue v une fonction dérivable sur R∗
−.

(F ) ∀x ∈ R∗
−, v′ + 3

x
v = 1

x5 + 6
x2 .

On note (F0) l’équation homogène associée.

1. Par définition, l’équation (F0) est l’équation suivante d’inconnue v une fonction dérivable sur R∗
− :

(F0) ∀x ∈ R∗
−, v′ + 3

x
v = 0.

L’équation (F0) est une équation linéaire du premier ordre homogène et résolue en v′. De plus la
fonction x 7→ 3

x est continue sur l’intervalle R∗
−. Elle admet donc des primitives sur R∗

− dont l’une
est donnée par x 7→ 3 ln (|x|). Or e−3 ln(|x|) = 1

|x3| = − 1
x3 Par conséquent, l’ensemble des solutions de

(F0) est donné par

S0 =
ß

v : R∗
− → R
x 7→ C −1

x3

∣∣∣∣ C ∈ R
™

Ou encore quitte à changer C en −C,

S0 =
ß

v : R∗
− → R
x 7→ C

x3

∣∣∣∣ C ∈ R
™

= Vect
Å

R∗
− → R
x 7→ 1

x3

ã
.

2. On applique la méthode de variation de la constante. Posons v0 : x 7→ 1
x3 . Soit v une fonction dérivable

sur R∗
−. Posons pour tout x ∈ R∗

−, w(x) = v(x)
v0(x) (car v0 ne s’annule pas sur R∗

−) i.e. v(x) = w(x)v0(x).
Alors la fonction w est définie et dérivable sur R∗

− comme quotient de fonctions qui le sont. De plus,

v solution de (F )

⇔ ∀x ∈ R∗
−, v′(x) + 3

x
v(x) = 1

x5 + 6
x2

⇔ ∀x ∈ R∗
−, w′(x)v0(x) + w(x)v′

0(x) + 3
x

w(x)v0(x) = 1
x5 + 6

x2

⇔ ∀x ∈ R∗
−, w′(x)v0(x) = 1

x5 + 6
x2 car v0 ∈ S0

⇔ ∀x ∈ R∗
−,

w′(x)
x3 = 1

x5 + 6
x2

⇔ ∀x ∈ R∗
−, w′(x) = 1

x2 + 6x car x ̸= 0
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La fonction x 7→ 1
x2 + 6x est continue sur R∗

− et admet donc des primitives sur R∗
− dont l’une est

donnée par x 7→ − 1
x + 3x2. Ainsi,

v solution de (F )

⇔ ∃C ∈ R, ∀x ∈ R∗
−, w(x) = −1

x
+ 3x2 + C

⇔ ∃C ∈ R, ∀x ∈ R∗
−, v(x) = w(x)v0(x) = w(x)

x3 = − 1
x4 + 3

x
+ C

x3 .

Conclusion, l’ensemble des solutions de (F ) est donné par

SF =
ß

v : R∗
− → R
x 7→ − 1

x4 + 3
x + C

x3

∣∣∣∣ C ∈ R
™

.

3. Soit y une fonction deux fois dérivable R∗
−. On pose pour tout x ∈ R∗

−, u(x) = y(x)
x3 puis v = u′.

(a) Puisque la fonction y est deux fois dérivable sur R∗
−, la fonction u est deux fois dérivable sur R∗

−
comme quotient de fonctions deux fois dérivables dont le dénominateur ne s’annule pas. Donc u′

existe bien, v est bien définie et même u′ est dérivable et donc v est dérivable sur R∗
− .

(b) On a pour tout x ∈ R∗
−, y(x) = x3u(x). Donc

∀x ∈ R∗
−, y′(x) = 3x2u(x) + x3u′(x).

Puis,

∀x ∈ R∗
−, y′′(x) = 6xu(x) + 3x2u′(x) + 3x2u′(x) + x3u′′(x) = x3u′′(x) + 6x2u′(x) + 6xu(x).

Ainsi,

y solution de (E−)
⇔ ∀x ∈ R∗

−, x2y′′(x)− 3xy′(x) + 3y(x) = 1 + 6x3

⇔ ∀x ∈ R∗
−, x2 (x3u′′(x) + 6x2u′(x) + 6xu(x)

)
− 3x

(
x3u′(x) + 3x2u(x)

)
+ 3x3u(x) = 1 + 6x3

⇔ ∀x ∈ R∗
−, x5u′′(x) +

(
6x4 − 3x4)u′(x) +

(
6x3 − 9x3 + 3x3)︸ ︷︷ ︸

=0

u(x) = 1 + 6x3

⇔ ∀x ∈ R∗
−, x5u′′(x) + 3x4u′(x) = 1 + 6x3

⇔ ∀x ∈ R∗
−, x5v′(x) + 3x4v(x) = 1 + 6x3

⇔ ∀x ∈ R∗
−, v′(x) + 3

x
v(x) = 1

x5 + 6
x2

⇔ v solution de (F )

Conclusion,
y solution de (E−) ⇔ v solution de (F )

(c) Avec les notations de la question précédente, et par la question 2., on a

y ∈ SE− ⇔ v ∈ SF

⇔ ∃C1 ∈ R, ∀x ∈ R∗
−, u′(x) = v(x) = − 1

x4 + 3
x

+ C1
x3 .
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Pour C1 ∈ R, la fonction x 7→ − 1
x4 + 3

x + C1
x3 est continue sur l’intervalle R∗

− donc admet des
primitives sur R∗

− dont l’une est donnée par x 7→ 1
3x3 + 3 ln (|x|)− C1

2x2 . Par conséquent,

y ∈ SE− ⇔ ∃ (C1, C2) ∈ R2, ∀x ∈ R∗
−, u(x) = 1

3x3 + 3 ln (|x|)− C1
2x2 + C2

⇔ ∃ (C1, C2) ∈ R2, ∀x ∈ R∗
−, y(x) = x3u(x) = 1

3 + 3x3 ln (|x|)− C1
2 x + C2x3.

Conclusion, (en posant C̃1 = −C1/2)

SE− =
ß

R∗
− → R
x 7→ 1

3 + 3x3 ln (|x|) + C1x + C2x3

∣∣∣∣ (C1, C2) ∈ R2
™

.

4. Soit y ∈ SE−.

(a) Par ce qui précède, il existe (C1, C2) ∈ R tel que ∀x ∈ R∗
−, y(x) = 1

3 + 3x3 ln (|x|) + C1x + C2x3.
On observe que

lim
x→−∞

1
3 + C1x + C2x3

3x3 ln (|x|) = lim
x→−∞

1
x3 + C1

x2 + C2

3 ln (|x|) = C2 ×
1

+∞ = 0.

Par conséquent,
1
3 + 3x3 ln (|x|) + C1x + C2x3 =

x→−∞
o
(
3x3 ln (|x|)

)
.

D’où,

y(x) = 1
3 + 3x3 ln (|x|) + C1x + C2x3 =

x→−∞
3x3 ln (|x|) + o

(
−3x3 ln (|x|)

)
∼

x→−∞
3x3 ln (|x|) .

Conclusion,
y(x) ∼

x→−∞
3x3 ln (|x|) .

(b) De la question précédente, on en déduit que

y(x)
x

∼
x→−∞

3x3 ln (|x|)
x

= 3x2 ln (|x|) .

Or deux équivalents ont la même limite. Donc

lim
x→−∞

y(x)
x

= lim
x→−∞

3x2 ln (|x|) = +∞.

Conclusion,

le graphe de la fonction y admet une branche parabolique de direction verticale en −∞.

Partie 2 : Le z, nous le signons à la pointe de l’épée

On considère l’équation suivante d’inconnue y une fonction deux fois dérivable sur R∗
+ :

(E+) ∀x ∈ R∗
+, x2y′′ + 3 |x| y′ + 3y = 1 + 6x3.

5. Soit y une fonction deux fois dérivable sur R∗
+. On pose pour tout t ∈ R, z(t) = y

(
et
)
. La fonction

x 7→ ex est deux fois dérivable sur R et à valeurs dans R∗
+ et la fonction y est deux fois dérivable sur

R∗
+. Donc par composée, la fonction z est deux fois dérivable sur R∗

+ . De plus pour tout x ∈ R∗
+ et

tout t ∈ R, on a t = ln(x) ⇔ x = et et on a donc ∀x ∈ R∗
+, y(x) = z (ln (x)). Par conséquent,

∀x ∈ R∗
+, y′(x) = 1

x
z′ (ln(x)) et y′′(x) = − 1

x2 z′ (ln(x)) + 1
x2 z′′ (ln(x)) .
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Par suite,

y solution de (E+)
⇔ ∀x ∈ R∗

+, x2y′′(x) + 3 |x| y′(x) + 3y(x) = 1 + 6x3

⇔ ∀x ∈ R∗
+, x2

Å
− 1

x2 z′ (ln(x)) + 1
x2 z′′ (ln(x))

ã
+ 3x

Å1
x

z′ (ln(x))
ã

+ 3z (ln (x)) = 1 + 6x3

⇔ ∀x ∈ R∗
+, −z′ (ln(x)) + z′′ (ln(x)) + 3z′ (ln(x)) + 3z (ln (x)) = 1 + 6x3

⇔ ∀t ∈ R, z′′(t) + 2z′(t) + 3z(t) = 1 + 6 e3t

Conclusion, y est solution de (E+) si et seulement si z est solution de

(G) ∀t ∈ R, z′′(t) + 2z′(t) + 3z(t) = 1 + 6 e3t .

6. L’équation homogène associée est

(G0) ∀t ∈ R, z′′(t) + 2z′(t) + 3z(t) = 0.

L’équation caractéristique associée à (G) est r2 + 2r + 3 = 0. Soit ∆ le discriminant associé, ∆ =
4− 12 = −8. Les racines sont donc complexes conjuguées et données par

r1 = −2 + 2i
√

2
2 = −1 + i

√
2 et r2 = −1− i

√
2.

Par conséquent l’ensemble SG0 des solutions de l’équation homogène est

SG0 =
ß

R → R
t 7→ e−t

(
A cos

(√
2t
)

+ B sin
(√

2t
)) ∣∣∣∣ (A, B) ∈ R2

™
.

Cherchons une solution de

(G1) ∀t ∈ R, z′′(t) + 2z′(t) + 3z(t) = 1.

Soit a ∈ R et z1 : R → R
t 7→ a

. La fonction z1 est deux fois dérivable sur R et

z1 est solution de (G1) ⇔ ∀t ∈ R, 0 + 3a = 1 ⇔ a = 1
3 .

Par conséquent, z1 : R → R
t 7→ 1

3
est une solution de (G1).

Cherchons une solution de

(G2) ∀t ∈ R, z′′(t) + 2z′(t) + 3z(t) = 6 e3t .

On note que 3 n’est pas une solution de l’équation caractéristique. Par conséquent pour λ ∈ R, on

cherche une solution de type z2 : R → R
t 7→ λ e3t . La fonction z2 est deux fois dérivable sur R et

z2 est solution de (G2) ⇔ ∀t ∈ R, 9 λ e3t +2× 3 λ e3t +3 λ e3t = 6 e3t

⇔ ∀t ∈ R, 18 λ e3t = 6 e3t

⇔ 18 λ = 6 car ∀t ∈ R, e3t ̸= 0

⇔ λ = 1
3 .
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Donc z2 : R → R
t 7→ 1

3 e3t est une solution de (G2). D’où, par le principe de superposition, la fonction

zp = z1 + z2 : R → R
t 7→ 1

3 + e3t

3
est une solution de (G). Conclusion, l’ensemble des solutions de (G)

est donné par

SG =
®

R → R
t 7→ 1+e3t

6 + e−t
(
A cos

(√
2t
)

+ B sin
(√

2t
)) ∣∣∣∣∣ (A, B) ∈ R2

´
.

7. Soit y une fonction deux fois dérivable sur R∗
+. Posons pour tout t ∈ R, z(t) = y

(
et
)
. Par la question

5., puis la question précédente, on a

y ∈ SE+ ⇔ z ∈ (G)

⇔ ∃ (A, B) ∈ R2, ∀t ∈ R, z(t) = 1 + e3t

3 + e−t
Ä
A cos

Ä√
2t
ä

+ B sin
Ä√

2t
ää

.

Or pour tout x ∈ R∗
+, y(x) = z (ln(x)). Ainsi, y ∈ SE+ si et seulement si

∃ (A, B) ∈ R2, ∀x ∈ R∗
+, y(x) = 1 + e3 ln(x)

3 + e− ln(x)
Ä
A cos

Ä√
2 ln(x)

ä
+ B sin

Ä√
2 ln(x)

ää
⇔ ∃ (A, B) ∈ R2,∀x ∈ R∗

+, y(x) = 1 + x3

3 + 1
x

Ä
A cos

Ä√
2 ln(x)

ä
+ B sin

Ä√
2 ln(x)

ää
.

Conclusion,

SE+ =
®

R → R∗
+

t 7→ 1+x3

3 + A cos(√
2 ln(x))+B sin(√

2 ln(x))
x

∣∣∣∣∣ (A, B) ∈ R2
´

.

Partie 3 : Voilà une solution branchée

On note S l’ensemble des fonctions deux fois dérivables sur R solutions de (E) sur R tout entier. Soit
y ∈ S . On pose y+ la restriction de y sur R∗

+ et y− la restriction de y sur R∗
−.

8. Puisque y est solution de (E) sur R tout entier, on en déduit que y+ est solution de la même équation
sur R∗

+, i.e. y+ est une solution de (E+). Donc par la question précédente,

∃ (A, B) ∈ R2, ∀x ∈ R∗
+, y(x) = y+(x) = 1 + x3

3 +
A cos

(√
2 ln(x)

)
+ B sin

(√
2 ln(x)

)
x

.

De même, y− est solution de (E−) donc

∃ (C, D) ∈ R2, ∀x ∈ R∗
+, y(x) = y−(x) = 1

3 + 3x3 ln (|x|) + Cx + Dx3.

9. Par la question précédente, on a directement que

lim
x→0
x<0

y−(x) = lim
x→0
x<0

1
3 + 3x3 ln (|x|) + Cx + Dx3 = 1

3 .

Or par hypothèse, la fonction y est deux fois dérivable sur R et donc notamment y est continue en 0.
Donc

y(0) = lim
x→0
x<0

y(x) = lim
x→0
x<0

y−(x) = 1
3 .

Conclusion,

y(0) = lim
x→0
x<0

y−(x) = 1
3 .
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10. Pour tout (A, B) ∈ R2, on admet que

lim
x→0
x>0

A cos
(√

2 ln(x)
)

+ B sin
(√

2 ln(x)
)

x
existe ⇔ A = B = 0.

Or, y est continue en 0 donc

1
3 = y(0) = lim

x→0
x>0

y(x) = lim
x→0
x>0

y+(x) = lim
x→0
x>0

1 + x3

3 +
A cos

(√
2 ln(x)

)
+ B sin

(√
2 ln(x)

)
x

.

Donc

lim
x→0
x>0

A cos
(√

2 ln(x)
)

+ B sin
(√

2 ln(x)
)

x
= lim

x→0
x>0

Å
y+(x)− 1 + x3

3

ã
= y(0)− 1

3 = 0.

D’où A cos(√
2 ln(x))+B sin(√

2 ln(x))
x existe et nécessairement, A = B = 0. Conclusion,

∀x ∈ R∗
+, y+(x) = 1 + x3

3 .

11. Pour tout x > 0, on a

y+(x)− y(0)
x− 0 =

y+(x)− 1
3

x
par la question 9.

=
1+x3

3 − 1
3

x

= x2

3 .

Par conséquent, y+ est dérivable à droite et

lim
x→0
x>0

y+(x)− y(0)
x− 0 = 0.

12. Pour tout x < 0, on a

y(x)− y(0)
x− 0 =

y−(x)− 1
3

x
par la question 9.

=
1
3 + 3x3 ln (|x|) + Cx + Dx3 − 1

3
x

= 3x2 ln (|x|) + C + Dx2.

Donc

lim
x→0
x<0

y(x)− y(0)
x− 0 = C.

Or la fonction y est dérivable deux fois sur R donc dérivable en 0. Donc

lim
x→0
x>0

y(x)− y(0)
x− 0 = lim

x→0
x<0

y(x)− y(0)
x− 0 = y′(0).

Donc par ce point et la question précédente,

y′(0) = 0 = C.

Donc
∀x ∈ R∗

−, y−(x) = 1
3 + 3x3 ln (|x|) + Dx3.
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13. Par les questions précédentes, nous avons vu que y est dérivable en 0 et deux fois dérivable sur R∗
− et

sur R∗
+ (comme composée de fonctions qui le sont). Il nous reste donc à montrer que y est deux fois

dérivable en 0 i.e. que
lim
x→0
x<0

y′(x)− y′(0)
x− 0 = lim

x→0
x>0

y′(x)− y′(0)
x− 0 .

Par ce qui précède, on a y′(0) = 0. Calculons

∀x > 0, y′(x) = y′
+(x) =

Å1 + x3

3

ã′
= x2

∀x < 0, y′(x) = y′
−(x)

=
Å1

3 + 3x3 ln (|x|) + Dx3
ã′

= 9x2 ln (|x|) + 3x3 1
x

+ 3Dx2

= 9x2 ln (|x|) + 3 (1 + D) x2

Ainsi,

lim
x→0
x>0

y′(x)− y′(0)
x− 0 = lim

x→0
x>0

x2 − 0
x− 0 = lim

x→0
x>0

x = 0

et

lim
x→0
x<0

y′(x)− y′(0)
x− 0 = lim

x→0
x<0

9x2 ln (|x|) + 3 (1 + D) x2 − 0
x− 0

= lim
x→0
x<0

9x ln (|x|) + 3 (1 + D) x

= 0 par croissance comparée.

Ainsi, on a bien
lim
x→0
x<0

y′(x)− y′(0)
x− 0 = lim

x→0
x>0

y′(x)− y′(0)
x− 0 .

Donc y est deux fois dérivable en 0 et y′′(0) = 0. Conclusion,

y est deux fois dérivable sur R.

Les étudiants curieux pourront s’amuser à démontrer que y n’est pas trois fois dérivable en 0...

14. Par les questions précédentes, nous avons vu que SI y est une solution de (E) ALORS,

∃D ∈ R, ∀x ∈ R, y(x) =


y+(x) = 1+x3

3 si x > 0
1
3 si x = 0
y−(x) = 1

3 + 3x3 ln (|x|) + Dx3 si x < 0.

Synthèse. Nous avons également vu que cette fonction était continue en 0, dérivable en 0 car y′ (0+) =
y′ (0−) = 0 et deux fois dérivable en 0, y′′(0) = 0 et même deux fois dérivable sur R tout entier.
Vérifions qu’elle est solution de (E). Pour tout x > 0, y(x) = y+(x) et y+ est une solution de (E+).
Donc y est une solution de (E) sur R∗

+. De même, pour tout x < 0, y(x) = y−(x) et y− est une
solution de (E−). Donc y est une solution de (E) sur R∗

−. Enfin, en 0 :

02y′′(0) + 3 |0| y′(0) + 3y(0) = 1 + 6× 03 ⇔ 3× 1
3 = 1 ce qui est vrai.
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Donc y est bien une solution de (E) sur R. Conclusion, l’ensemble des solutions de (E) est

S =


R → R

x 7→
®1+x3

3 si x ⩾ 0
1
3 + 3x3 ln (|x|) + Dx3 si x < 0.

∣∣∣∣∣∣∣ D ∈ R

 .

Notez que bien que (E) soit une équation différentielle d’ordre 2, un seule constante, un seul degré de
liberté apparait dans l’ensemble solution. Cela provient du fait qu’elle n’est pas résolue en y′′ et qu’un
raccordement est nécessaire.

Problème II - Matrices

On considère la matrice A =

Ñ
2 1 1
−1 2 −1
−2 0 −1

é
. On pose N = A− I3.

Partie 1 : Gauss ouvre le bal

1. On a les égalités suivantes :

N = A− I3 =

Ñ
2 1 1
−1 2 −1
−2 0 −1

é
−

Ñ
1 0 0
0 0 0
0 0 1

é
=

Ñ
1 1 1
−1 1 −1
−2 0 −2

é
.

Puis,

N2 =

Ñ
1 1 1
−1 1 −1
−2 0 −2

é
×

Ñ
1 1 1
−1 1 −1
−2 0 −2

é
=

Ñ
−2 2 −2
0 0 0
2 −2 2

é
.

Enfin,

N3 = NN2 =

Ñ
1 1 1
−1 1 −1
−2 0 −2

éÑ
−2 2 −2
0 0 0
2 −2 2

é
=

Ñ
0 0 0
0 0 0
0 0 0

é
.

Conclusion,

N =

Ñ
1 1 1
−1 1 −1
−2 0 −2

é
, N2 =

Ñ
−2 2 −2
0 0 0
2 −2 2

é
, N3 = 03.
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2. Soit λ ∈ R. Soit X =

x
y
z

 ∈ R3. On a les équivalences suivantes :

X ∈ Sλ ⇔ AX = λ X

⇔

Ñ
2 1 1
−1 2 −1
−2 0 −1

éx
y
z

 = λ

x
y
z


⇔

 2x + y + z
−x + 2y − z
−2x− z

 =

λ x
λ y
λ z



⇔


(2− λ) x + y + z = 0
−x + (2− λ) y − z = 0
−2x− (1 + λ) z = 0

⇔


−x + (2− λ) y − z = 0
(2− λ) x + y + z = 0
−2x− (1 + λ) z = 0

L1 ↔ L2 .

On obtient alors que

X ∈ Sλ ⇔


−x + (2− λ) y − z = 0Ä
1 + (2− λ)2

ä
y + (1− (2− λ)) z = 0

−2 (2− λ) y + (−1− λ +2) z = 0

L2 ← L2 + (2− λ) L1
L3 ← L3 − 2L1

⇔


−x + (2− λ) y − z = 0(
λ2−4 λ +5

)
y + (λ−1) z = 0

2 (λ−2) y − (λ−1) z = 0

⇔


−x + (2− λ) y − z = 0(
λ2−4 λ +5

)
y + (λ−1) z = 0(

λ2−2 λ +1
)

y = 0
L3 ← L3 + L2

⇔


−x + (2− λ) y − z = 0(
λ2−4 λ +5

)
y + (λ−1) z = 0

(λ−1)2 y = 0.

Premier cas, λ = 1. Alors,

X ∈ S1 ⇔


−x + y − z = 0
2y = 0
0 = 0.

⇔
®
−x− z = 0
y = 0

⇔
®

x = −z

y = 0

Ainsi,

S1 =


−z

0
z

 ∈ R3

∣∣∣∣∣∣ z ∈ R

 = Vect

Ñ−1
0
1

é .
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Deuxième cas, λ ̸= 1. Alors,

X ∈ Sλ ⇔


−x− z = 0
(λ−1) z = 0
y = 0

⇔


−x− z = 0
z = 0 car λ ̸= 1
y = 0

Dans ce cas,
Sλ = {0R3} .

Partie 2 : Méthode 1, Newton le rejoint pour former un binôme

3. Soit n ∈ N. Par définition de N , on sait que A = I3 + N . De plus, N3 = 03 donc pour tout k ⩾ 3,
Nk = 03. Or N et I3 commutent. Donc par la formule du binôme de Newton, on a

An = (I3 + N)n =
n∑

k=0

Ç
n

k

å
NkIn−k

3 =
n∑

k=0

Ç
n

k

å
Nk.

Si n ⩾ 2,

An =
Ç

n

0

å
N0 +

Ç
n

1

å
N +

Ç
n

2

å
N2 + 03 = I3 + nN + n (n− 1)

2 N2.

On note que cette formule reste vraie si n = 0 ou n = 1. Ainsi, pour tout n ∈ N,

An =

Ñ
1 0 0
0 1 0
0 0 1

é
+ n

Ñ
1 1 1
−1 1 −1
−2 0 −2

é
+ n (n− 1)

2

Ñ
−2 2 −2
0 0 0
2 −2 2

é
=

Ñ
1 0 0
0 1 0
0 0 1

é
+ n

Ñ
1 1 1
−1 1 −1
−2 0 −2

é
+

(
n2 − n

)Ñ−1 1 −1
0 0 0
1 −1 1

é
=

Ñ
1 + 2n− n2 n2 2n− n2

−n n + 1 −n
n2 − 3n n− n2 n2 − 3n + 1

é
.

Conclusion,

∀n ∈ N, An =

Ñ
1 + 2n− n2 n2 2n− n2

−n n + 1 −n
n2 − 3n n− n2 n2 − 3n + 1

é
.

4. En particulier, pour n = 5, on a

A5 =

Ñ
1 + 10− 25 25 10− 25
−5 6 −5

25− 15 5− 25 25− 15 + 1

é
=

Ñ
−14 25 −15
−5 6 −5
10 −20 11

é
.

Conclusion,

A5 =

Ñ
−14 25 −15
−5 6 −5
10 −20 11

é
.
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Partie 3 : Méthode 2, Mais Euclide apporte la division

Pour tout n ∈ N, on admet l’existence de trois réels (an, bn, cn) ∈ R3 et d’un polynôme Qn tels que

∀x ∈ R, xn = (x− 1)3 Qn(x) + anx2 + bnx + cn.

5. Soit n ∈ N, n ⩾ 2. Les fonctions x 7→ xn (x− 1)3, x 7→ Qn(x) et x 7→ ax2 + bx + c sont deux fois
dérivables sur R en tant que fonctions polynomiales et

∀x ∈ R, nxn−1 = 3 (x− 1)2 Qn(x) + (x− 1)3 Q′
n(x) + 2anx + bn.

En dérivant une seconde fois, pour tout x ∈ R,

n (n− 1) xn−2 = 6 (x− 1) Qn(x) + 3 (x− 1)2 Q′
n(x) + 3 (x− 1) Q′

n(x) + (x− 1)3 Q′′
n(x) + 2an

= 6 (x− 1) Qn(x) + 6 (x− 1)2 Q′
n(x) + (x− 1)3 Q′′

n(x) + 2an.

Conclusion, pour tout x ∈ R,

nxn−1 = 3 (x− 1)2 Qn(x) + (x− 1)3 Q′
n(x) + 2anx + bn

n (n− 1) xn−2 = 6 (x− 1) Qn(x) + 6 (x− 1)2 Q′
n(x) + (x− 1)3 Q′′

n(x) + 2an.

6. Soit n ∈ N, n ⩾ 2. Par la question précédente, en prenant x = 1, dans les deux égalités on a®
n = 2an + bn

n (n− 1) = 2an

⇔
®

n = 2an + bn

an = n(n−1)
2

⇔
®

bn = n− 2an = n− n (n− 1) = −n (n− 2)
an = n(n−1)

2 .

Et puisque pour tout x ∈ R, xn = (x− 1)3 Qn(x) + anx2 + bnx + cn, en prenant x = 1 encore une fois,
on obtient

1 = an + bn + cn = n (n− 1)
2 − n (n− 2) + cn

⇔ cn = n (n− 2)− n (n− 1)
2 + 1

= 2n2 − 4n− n2 + n + 2
2 = n2 − 3n + 2

2 = (n− 1) (n− 2)
2 .

Conclusion,

∀n ⩾ 2, an = n (n− 1)
2 , bn = −n (n− 2) , cn = (n− 1) (n− 2)

2 .

7. Soit n ∈ N, n ⩾ 2. Par la relation xn = (x− 1)3 Qn(x) + anx2 + bnx + cn, on en déduit que

An = (A− I3)3 Qn (A) + anA2 + bnA + cnI3 = N3︸︷︷︸
=03

Qn (A) + anA2 + bnA + cnI3 = anA2 + bnA + cnI3.

Conclusion, par la question précédente,

An = n (n− 1)
2 A2 − n (n− 2) A + (n− 1) (n− 2)

2 I3.
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8. En particulier, pour n = 5,
A5 = 10A2 − 15A + 6I3.

Or

A2 =

Ñ
2 1 1
−1 2 −1
−2 0 −1

éÑ
2 1 1
−1 2 −1
−2 0 −1

é
=

Ñ
1 4 0
−2 3 −2
−2 −2 −1

é
.

Ainsi,

A5 = 10

Ñ
1 4 0
−2 3 −2
−2 −2 −1

é
− 15

Ñ
2 1 1
−1 2 −1
−2 0 −1

é
+ 6

Ñ
1 0 0
0 1 0
0 0 1

é
=

Ñ
−14 25 −15
−5 6 −5
10 −20 11

é
.

Conclusion, on retrouve bien le résultat de la question 4.

A5 =

Ñ
−14 25 −15
−5 6 −5
10 −20 11

é
.

Partie 4 : Soyons carrés pour éviter de se prendre les pieds dans les racines

On pose T =

Ñ
1 1 0
0 1 1
0 0 1

é
et M = T − I3. On s’intéresse à déterminer l’ensemble des racines carrées de T :

RT =
{

S ∈M3 (R)
∣∣ S2 = T

}
.

Pour ce faire, on pose également CT l’ensemble des matrices commutant avec T :

CT = {S ∈M3 (R) | TS = ST } .

On admet le résultat suivant

CT =
{

aI3 + bM + cM2 ∈M3 (R)
∣∣ (a, b, c) ∈ R3} .

9. Soit S ∈ RT . Alors, par définition, S2 = T . Par suite,

TS = S2S = S3 = SS2 = ST.

Donc S ∈ CT . Ceci étant vrai pour S ∈ RT quelconque, on en déduit que

RT ⊂ CT .

10. Soit S ∈ RT . Alors par la question précédente, on a S ∈ CT . Donc d’après l’énoncé,

∃ (a, b, c) ∈ R3, S = aI3 + bM + cM2.

Donc

T = S2 =
(
aI3 + bM + cM2) (aI3 + bM + cM2)

= a2I3 + abM + acM2 + abM + b2M2 + bcM3 + acM2 + bcM3 + c2M4

= a2I3 + 2abM +
(
b2 + 2ac

)
M2 + 2bcM3 + c2M4.

Or

M = T − I3 =

Ñ
0 1 0
0 0 1
0 0 0

é
.
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Donc

M2 =

Ñ
0 1 0
0 0 1
0 0 0

éÑ
0 1 0
0 0 1
0 0 0

é
=

Ñ
0 0 1
0 0 0
0 0 0

é
.

Puis,

M3 =

Ñ
0 1 0
0 0 1
0 0 0

éÑ
0 0 1
0 0 0
0 0 0

é
= 03

et donc M4 = 03. On obtient alors que

T = a2I3 + 2abM +
(
b2 + 2ac

)
M2 + 2bcM3 + c2M4

⇔ T = a2

Ñ
1 0 0
0 1 0
0 0 1

é
+ 2ab

Ñ
0 1 0
0 0 1
0 0 0

é
+
(
b2 + 2ac

)Ñ0 0 1
0 0 0
0 0 0

é
⇔

Ñ
1 1 0
0 1 1
0 0 1

é
=

Ñ
a2 2ab b2 + 2ac
0 a2 2ab
0 0 a2

é
⇔


a2 = 1
2ab = 1
b2 + 2ac = 0

⇔


a = 1
b = 1

2
1
4 + 2c = 0 ⇔ c = −1

8

OU


a = −1
b = −1

2
1
4 − 2c = 0 ⇔ c = 1

8

⇔ S = aI3 + bM + cM2 =

Ñ
1 1

2 −1
8

0 1 1
2

0 0 1

é
︸ ︷︷ ︸

=S0

OU S =

Ñ
−1 −1

2
1
8

0 −1 −1
2

0 0 −1

é
= −S0.

Ainsi,

RT ⊂


Ñ

1 1
2 −1

8
0 1 1

2
0 0 1

é
;

Ñ
−1 −1

2
1
8

0 −1 −1
2

0 0 −1

é .

Réciproquement, si S = S0 =

Ñ
1 1

2 −1
8

0 1 1
2

0 0 1

é
, alors

S2
0 =

Ñ
1 1

2 −1
8

0 1 1
2

0 0 1

éÑ
1 1

2 −1
8

0 1 1
2

0 0 1

é
=

Ñ
1 1 0
0 1 1
0 0 1

é
= T

De même, si S = −S0, alors S2 = (−S0) (−S0) = S2
0 = T . Donc {S0 ; −S0} ⊂ RT . Conclusion, RT

possède bien exactement deux éléments :

RT =


Ñ

1 1
2 −1

8
0 1 1

2
0 0 1

é
;

Ñ
−1 −1

2
1
8

0 −1 −1
2

0 0 −1

é .
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Partie 5 : Pour gagner c’est comme au baseball, il faut savoir changer de base

On pose P =

Ñ
1 1/2 −1
0 1/2 1/2
−1 0 1

é
11. On applique l’algorithme de Gauss-Jordan :

P =

Ñ
1 1/2 −1
0 1/2 1/2
−1 0 1

é
I3 =

Ñ
1 0 0
0 1 0
0 0 1

é
∼
L

Ñ
1 1/2 −1
0 1/2 1/2
0 1/2 0

é
L3 ← L3 + L1 ∼

L

Ñ
1 0 0
0 1 0
1 0 1

é
∼
L

Ñ
1 1/2 −1
0 1/2 0
0 1/2 1/2

é
L3 ↔ L2 ∼

L

Ñ
1 0 0
1 0 1
0 1 0

é
∼
L

Ñ
1 1/2 −1
0 1/2 0
0 0 1/2

é
L3 ← L3 − L2 ∼

L

Ñ
1 0 0
1 0 1
−1 1 −1

é
∼
L

Ñ
1 1/2 −1
0 1 0
0 0 1

é
L2 ← 2L2
L3 ← 2L3

∼
L

Ñ
1 0 0
2 0 2
−2 2 −2

é
∼
L

Ñ
1 0 0
0 1 0
0 0 1

é
L1 ← L1 − 1

2L2 + L3 ∼
L

Ñ
−2 2 −3
2 0 2
−2 2 −2

é
.

On obtient donc que P ∼
L

I3, donc

la matrice P est inversible et P −1 =

Ñ
−2 2 −3
2 0 2
−2 2 −2

é
.

On n’a pas oublié naturellement de vérifier son résultat :

PP −1 =

Ñ
1 1/2 −1
0 1/2 1/2
−1 0 1

éÑ
−2 2 −3
2 0 2
−2 2 −2

é
= I3.

12. A l’aide de la question précédente, on a

P −1AP = P −1

Ñ
2 1 1
−1 2 −1
−2 0 −1

éÑ
1 1/2 −1
0 1/2 1/2
−1 0 1

é
=

Ñ
−2 2 −3
2 0 2
−2 2 −2

éÑ
1 3/2 −1/2
0 1/2 1
−1 −1 1

é
=

Ñ
1 1 0
0 1 1
0 0 1

é
Conclusion,

P −1AP = T.
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On considère
RA =

{
B ∈M3 (R)

∣∣ B2 = A
}

.

13. Soit B ∈M3 (R). Posons S = P −1BP . On a les équivalences suivantes :

B ∈ RA ⇔ B2 = A ⇔ P −1B2P = P −1AP

⇔ P −1BPP −1BP = T d’après la question précédente
⇔ S2 = T

⇔ S ∈ RT .

14. Avec les notations de la questions précédentes, pour B ∈M3 (R)

B ∈ RA ⇔ S ∈ RT .

Donc par la question 10., en posant S0 =

Ñ
1 1

2 −1
8

0 1 1
2

0 0 1

é
,

B ∈ RA ⇔ S = S0 OU S = −S0

⇔ P −1BP = S0 OU P −1BP = −S0

⇔ B = PS0P −1 OU B = −PS0P −1.

Calculons,

PS0P −1 = P

Ñ
1 1

2 −1
8

0 1 1
2

0 0 1

éÑ
−2 2 −3
2 0 2
−2 2 −2

é
=

Ñ
1 1/2 −1
0 1/2 1/2
−1 0 1

éÑ
−3/4 7/4 −7/4

1 1 1
−2 2 −2

é
=

Ñ
7/4 1/4 3/4
−1/2 3/2 −1/2
−5/4 1/4 −1/4

é
.

Conclusion,

RA =

1
4

Ñ
7 1 3
−2 6 −2
−5 1 −1

é
; 1

4

Ñ
−7 −1 −3
2 −6 2
5 −1 1

é .

Il est possible de contrôler son résultat en vérifiant que S2
0 = A.

Problème III - Analyse asymptotique
On pose pour n = 1,

tan[1] = tan
Puis par récurrence, pour tout n ∈ N∗,

tan[n+1] = tan ◦ tan[n] = tan ◦ tan ◦ · · · ◦ tan︸ ︷︷ ︸
n+1 fois

où l’on rappelle que ◦ désigne la composition.
Partie 1 : Je compose donc je suis

1. On pose I1 =
[
−π

4 ; π
4
]

et I2 =
[
− arctan

(
π
4
)

; arctan
(

π
4
)]

.
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(a) La fonction tan est continue et strictement croissante sur I1 ⊂
]
−π

2 ; π
2
[
. Donc une conséquence

du théorème de la bijection est

tan (I1) =
[
tan

(
−π

4

)
; tan

(π

4

)]
= [−1 ; 1] .

De même la fonction arctan est continue et strictement croissante sur [−1 ; 1] ⊂ R, donc

arctan ([−1 ; 1]) = [arctan (−1) ; arctan (1)] =
[
−π

4 ; π

4

]
= I1.

(b) On a par définition,

x ∈ tan−1 ([−1 ; 1]) ⇔ tan(x) ∈ [−1 ; 1] ⇔ ∃k ∈ Z, −π

4 + kπ ⩽ x ⩽
π

4 + kπ.

Conclusion,
tan−1 ([−1 ; 1]) =

⋃
k∈Z

[
−π

4 + kπ ; π

4 + kπ
]

.

(c) La fonction tan est strictement croissante sur I2 =
[
− arctan

(
π
4
)

; arctan
(

π
4
)]
⊂

]
−π

2 ; π
2
[
. Donc

tan (I2) =
[
tan

(
− arctan

(π

4

))
; tan

(
arctan

(π

4

))]
=

[
−π

4 ; π

4

]
= I1.

Donc d’après la question précédente,

tan[2] (I2) = tan (tan (I2)) = tan (I1) = [−1 ; 1] .

Conclusion,
tan[2] (I2) = [−1 ; 1] .

On admet dans la suite que pour tout n ∈ N∗, il existe In = [−ηn ; ηn] un voisinage de 0, centrée en 0, avec
ηn ∈ R∗

+ tel que tan[n] est bien définie et même C 5 sur In. On suppose que pour tout n ∈ N∗,

In+1 ⊂ In.

2. (a) On procède par récurrence sur n. Pour tout n ∈ N∗, on pose

P(n) : « tan[n] est impaire sur In. »

Initialisation. Si n = 1, alors tan est une fonction impaire et I1 est centré en 0. Donc tan est
impaire sur I1.
Hérédité. Soit n ∈ N∗. Montrons que P(n) ⇒ P(n + 1). Supposons P(n) vraie et montrons
que P(n + 1) est aussi vraie. Par hypothèse In+1 est centré en 0. De plus pour x ∈ In+1, on a
−x ∈ In+1 et

tan[n+1](−x) = tan
Ä
tan[n](−x)

ä
.

Or −x ∈ In+1 ⊂ In et par hypothèse de récurrence, tan[n] est impaire sur In. Donc tan[n](−x) =
− tan[n](x). Ainsi,

tan[n+1](−x) = tan
Ä
− tan[n](x)

ä
.

Or la fonction tan est impaire sur son ensemble de définition donc

tan[n+1](−x) = − tan
Ä
tan[n](x)

ä
= − tan[n+1](x).

Ceci étant vrai pour tout x ∈ In+1, on conclut que tan[n+1] est impaire sur In+1.
Conclusion, pour tout n ∈ N∗, P(n) est vraie.
Conclusion, pour tout n ∈ N∗, la fonction tan[n] est impaire sur In .
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(b) Soit n ∈ N∗. On sait que la fonction tan[n] est C 5 sur In un voisinage de 0. Donc on en déduit que
la fonction tan[n] admet un développement limité à l’ordre 5 en 0 : il existe (an, bn, cn, un, vn, wn) ∈
R3 tel que

tan[n](x) =
x→0

un + anx + vnx2 + bnx3 + wnx4 + cnx5 + o
(
x5) .

Or d’après la question 2.a, la fonction tan[n] est impaire donc

un = vn = wn = 0.

Conclusion,
tan[n](x) =

x→0
anx + bnx3 + cnx5 + o

(
x5) .

Partie 2 : Il n’y a que le premier pas qui coûte

On admet dans la suite que pour tout n ∈ N∗, il existe (an, bn, cn) ∈ R3 tel que

tan[n](x) =
x→0

anx + bnx3 + cnx5 + o
(
x5) .

3. Par le cours, on a

sin(x) =
x→0

x− x3

6 + x5

120 + o
(
x5) .

Et sa forme normalisée est donnée par

sin(x) =
x→0

x

Å
1− x2

6 + x4

120 + o
(
x4)ã .

4. On rappelle également que

cos (x) = 1− x2

2 + x4

24 + o
(
x4) .

NB : puisque la forme normalisée du sin permet la factorisation d’un x, nous gagnons un ordre pour
le cos. De plus

1
1 + u

=
u→0

1− u + u2 + o
(
u2) .

Posons pour tout x ∈
]
−π

2 ; π
2
[
, u(x) =

x→0
−x2

2 + x4

24 + o
(
x4). Alors,

• u(x) →
x→0

0

• −u(x) =
x→0

x2

2 −
x4

24 + o
(
x4)

• De plus u(x) ∼
x→0
−x2

2 donc u2(x) ∼
x→0

x4

4 . Donc

u2(x) =
x→0

x4

4 + o
(
x4) .

• Enfin o
(
u2(x)

)
=

x→0
o
(
x4).

Ainsi,

1
cos(x) =

x→0

1
1 + u(x) =

x→0
1 + x2

2 −
x4

24 + o
(
x4) + x4

4 + o
(
x4) + o

(
x4) =

x→0
1 + x2

2 + 5x4

24 + o
(
x4) .
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Par produit,

tan(x) = sin(x)
cos(x) =

x→0

Å
x− x3

6 + x5

120 + o
(
x5)ãÅ1 + x2

2 + 5x4

24 + o
(
x4)ã

=
x→0

x + x3

2 + 5x5

24 + o
(
x5)

− x3

6 − x5

12 + o
(
x5)

+ x5

120 + o
(
x5)

+ o
(
x5)

=
x→0

x + 3− 1
6 x3 + 25− 10 + 1

120 x5 + o
(
x5)

=
x→0

x + x3

3 + 2x5

15 + o
(
x5) .

Conclusion,

tan(x) =
x→0

x + x3

3 + 2x5

15 + o
(
x5) .

Et par unicité du développement limité, on retrouve bien que

a1 = 1 et b1 = 1
3 et c1 = 2

15 .

Partie 3 : La meilleure façon de marcher, c’est d’itérer

5. Soit n ∈ N∗. On pose un(x) =
x→0

anx + bnx3 + cnx5 + o
(
x5).

(a) Par produit nous avons en premier lieu,

u2
n(x) =

x→0

(
anx + bnx3 + cnx5 + o

(
x5)) (anx + bnx3 + cnx5 + o

(
x5))

=
x→0

a2
nx2 + anbnx4 + o

(
x5)

+ anbnx4 + o
(
x5)

+ o
(
x5)

=
x→0

a2
nx2 + 2anbnx4 + o

(
x5) .

Par suite,

u3
n(x) = un(x)u2

n(x) =
x→0

(
anx + bnx3 + cnx5 + o

(
x5)) (a2

nx2 + 2anbnx4 + o
(
x5))

=
x→0

a3
nx3 + 2a2

nbnx5 + o
(
x5)

+ a2
nbnx5 + o

(
x5)

+ o
(
x5)

=
x→0

a3
nx3 + 3a2

nbnx5 + o
(
x5) .

Conclusion,
u3

n(x) =
x→0

a3
nx3 + 3a2

nbnx5 + o
(
x5) .

(b) On note que, si an ̸= 0, un(x) ∼
x→0

anx. Donc par élévation à la puissance, on obtient que

u5
n(x) ∼

x→0
a5

nx5.
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Ainsi,
u5

n(x) =
x→0

a5
nx5 + o

(
x5) .

Si an = 0, un(x) ∼
x→0

o (x) et on retrouve que u5
n(x) =

x→0
o
(
x5) =

x→0
a5

nx5 + o
(
x5). Conclusion,

u5
n(x) =

x→0
a5

nx5 + o
(
x5) .

Le calcul u2
n(x)× u3

n(x) fonctionnait aussi très bien.
(c) En utilisons les résultats précédents, on a

tan (u) =
u→0

u + u3

3 + 2u5

15 + o
(
u5) .

De plus en posant un(x) =
x→0

anx + bnx3 + cnx5 + o
(
x5), alors

• un(x) = →
x→0

0.

• u3
n(x)
3 =

x→0
a3

n
3 x3 + a2

nbnx5 + o
(
x5).

• 2u5
n(x)
15 =

x→0
2a5

n
15 x5 + o

(
x5).

• Enfin, o (un(x)) =
x→0

o
(
x5).

Par conséquent,

tan[n+1](x) = tan
Ä
tan[n](x)

ä
= tan (un(x)) =

x→0
anx + bnx3 + cnx5 + o

(
x5)

+ a3
n
3 x3 + a2

nbnx5 + o
(
x5)

+ 2a5
n

15 x5 + o
(
x5)

+ o
(
x5) .

Conclusion,

tan[n+1](x) =
x→0

anx +
Å

a3
n

3 + bn

ã
x3 +

Å2a5
n

15 + a2
nbn + cn

ã
x5 + o

(
x5) .

(d) Or par définition de an+1, bn+1 et cn+1, on a également

tan[n+1](x) =
x→0

an+1x + bn+1x3 + cn+1x5 + o
(
x5) .

Donc par unicité du développement limité, on en déduit que
an+1 = an

bn+1 = a3
n
3 + bn

cn+1 = 2a5
n

15 + a2
nbn + cn.

6. (a) Pour tout n ∈ N∗, on a an+1 = an. Donc la suite (an)n∈N∗ est constante et donc vérifie

∀n ∈ N∗, an = a1.

Donc par la question 4., on en déduit que

∀n ∈ N∗, an = 1.
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(b) On en déduit alors que pour tout n ∈ N∗,

bn+1 = a3
n

3 + bn = 1
3 + bn.

La suite (bn)n∈N∗ est donc une suite arithmétique de raison r = 1
3 . Donc pour tout n ∈ N∗,

bn = (n− 1) r + b1 = n− 1
3 + b1 = n− 1

3 + 1
3 d’après la question 4..

Conclusion,
∀n ∈ N∗, bn = n

3 .

(c) Soit n ∈ N∗, n ⩾ 2. Par ce qui précède on a pour tout k ∈ N∗,

ck+1 = 2a5
k

15 + a2
kbk + ck = 2

15 + k

3 + ck.

Ainsi,

n−1∑
k=1

(ck+1 − ck) =
n−1∑
k=1

Å 2
15 + k

3

ã
= 2 (n− 1)

15 + 1
3

(n− 1) n

2 = n− 1
30 (4 + 5n) .

Conclusion,
n−1∑
k=1

(ck+1 − ck) = (n− 1) (5n + 4)
30 .

(d) Soit n ∈ N, n ⩾ 2. On remarque que ∑n−1
k=1 (ck+1 − ck) est une somme télescopique. Par consé-

quent,

n−1∑
k=1

(ck+1 − ck) = cn−1+1 − c1 = cn − c1 = cn −
2
15 d’après la question 4.

Ainsi, à l’aide de la question précédente,

cn = (n− 1) (5n + 4)
30 + 2

15 = 5n2 − n− 4 + 4
30 = (5n− 1) n

30 .

On note que la formule reste vraie si n = 1. Conclusion,

∀n ∈ N∗, cn = (5n− 1) n

30 .

7. En utilisant les questions précédentes pour n = 5, on obtient

a5 = 1 et b5 = 5
3 et c5 = 24× 5

30 = 24
6 = 4.

Conclusion,

tan[5](x) =
x→0

x + 5x

3 + 4x5 + o
(
x5) .
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