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Correction du Devoir Maison 5
Equations différentielle, matrices, analyse
asymptotique

Du mardi 06 janvier

Probleme I - Equations différentielles

L’objectif de ce probleme est de déterminer I’ensemble des solutions de 1’équation suivante sur R :
(E) a2y 4+ 3z|y + 3y =1+ 625
Partie 1 : Le v de la victoire

On considere 1’équation suivante d’inconnue y une fonction deux fois dérivable sur R* :

(E-) Vo e RY, 22y +3|z|y + 3y =1+ 62°.

On définit également I’équation d’inconnue v une fonction dérivable sur R* .
3 1 6

F Vo € R*, "=+ .

(F) x z v+ mv o + 22

On note (Fp) équation homogene associée.

1. Par définition, I’équation (Fp) est ’équation suivante d’inconnue v une fonction dérivable sur R* :
(Fo) Vz € R*, v+ —v=0.
x

L’équation (Fp) est une équation linéaire du premier ordre homogene et résolue en v'. De plus la

fonction x +— % est continue sur ’intervalle R* . Elle admet donc des primitives sur R* dont 'une

est donnée par = — 31n (|z|). Or e 3I0(2) = L — _:713 Par conséquent, I’ensemble des solutions de

x3|
S = {v: R

Ou encore quitte a changer C' en —C,

5”0:{11: Ro = Hg ICER}:Vect(R - ]1? )

(Foy) est donné par
‘CER}

3

2. On applique la méthode de variation de la constante. Posons vg : © +— x—lg, Soit v une fonction dérivable
sur R* . Posons pour tout z € R* , w(z) = 72)((2)) (car vy ne s’annule pas sur R* ) i.e. v(z) = w(z)vg(x).

Alors la fonction w est définie et dérivable sur R* comme quotient de fonctions qui le sont. De plus,

v solution de

& VreRY, v’(x)—k%v(w):%—i—%
3 1 6
& VzeRE, w' (z)vo(z) + w(x)vy(x) + Ew(x)vo(a:) =3t
& VzeR', w'(z)ve(z) = % + % car vy € S
/
& Vr € R*, wngsg %
& VzeRY, w'(x):%—i-&c car x # 0
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La fonction z ?12 + 6x est continue sur R* et admet donc des primitives sur R* dont 'une est
donnée par x — —% + 322, Ainsi,

v solution de

1
& JdC e R, Vz € RY, w(m):—;+3x2+0
& 1C e R, Vz € RZ, v(x) = w(z)vy(z) = pe i + p + __

Conclusion, ’ensemble des solutions de est donné par

3. Soit y une fonction deux fois dérivable R* . On pose pour tout = € R* |, u(z) = % puis v = u’.
(a) Puisque la fonction y est deux fois dérivable sur R* , la fonction u est deux fois dérivable sur R*
comme quotient de fonctions deux fois dérivables dont le dénominateur ne s’annule pas. Donc
existe bien, ‘v est bien déﬁnie‘ et méme u’ est dérivable et donc ‘v est dérivable sur R* |.

(b) On a pour tout x € R* | y(z) = z3u(x). Donc

Ve e RY, Y (z) = 32%u(z) + 23/ (z).
Puis,
Vo e RY, y'(x) = 6zu(x) + 32°u (x) + 3% () + 230" (z) = 23" (2) + 622/ () + 6zu(z).
Ainsi,
y solution de (E—|)
Vo € RY, 22y (z) — 3xy/ (z) + 3y(z) = 1 + 62°
& VreRE, 2? (2% (z) + 6270 (z) + 6zu(x))
— 3z (2°u/(2) + 32°u(2)) + 32°u(z) = 1 + 62°
& Vo € RY, ou (z) + (6:04 - 3:64) o' (z) + (63v3 —92% + 33:3) u(z) =1+ 623
=0
& Vo € RY, 25U (x) 4+ 3zt (z) = 1 + 62°
& Vo € RY, 25 (z) + 3ztv(z) = 1 + 62°
3 1 6
& Vo e RY, v'(x) + ;v(:n) = + -
= v solution de (|F)
Conclusion,

‘ y solution de & v solution de ‘

(c¢) Avec les notations de la question précédente, et par la question on a

yEYE, == vE Sy

<~ 301 S R, Vz € R*_, u,(:L') = 'U(g;) = —— +



Mathématiques PTSI, DM5 Cor 2025-2026

(&N

Pour C € R, la fonction x — —%4 + % + =% est continue sur 'intervalle R* donc admet des

primitives sur R* dont I'une est donnée par = — 3% +3n(|z]) — 2%2 Par conséquent,
yEFp © I(CL0) ERE Vo €RY,  u(w) = —— +3In (2]) = 2L + Gy
’ ’ - 3a3 222
1 C
& 3(Cy,Cy) €R? Vz € RY, y(z) = 23u(x) = 3 + 323 1n (|2]) — 71:3 + Cya3.

Conclusion, (en posant C; = —C1/2)

yE_:{R_ - R

z +— 3+4+32%In(|z]) + Crz + Coa?®

’(01,02)61@2}.

4. Soit y € SE_.

(a) Par ce qui précede, il existe (C1,Ca) € R tel que Vo € R*, y(z) = § + 323 In (|z|) + C1z + Coz®.
On observe que

1 3 1, C

z+C C =+ 2+ C 1
lim 3T TTO g w2 o 1y,
z——oo  3x31n (|z|) z——oco  3ln(|z|) +0o0

Par conséquent,

1
3 + 323 In (|z]) + Crx + Caz® L0 (3x3 In (Jz[)) .
D’ou,
1
y(x) = = +32%In(|z|) + Crz + Coz® = 323In(|z|) +o (—3963 In(|z])) ~ 323 1n (|z]).
3 T——00 T——00

Conclusion,

y(@) ~ 3a°n(jz]).

T—r—00

(b) De la question précédente, on en déduit que

@ ~ M = 32%1In (|z]).

€r xT——00 T

Or deux équivalents ont la méme limite. Donc

lim M: lim 3z%In (|z|) = +oo.
r——00 I T——00

Conclusion,

le graphe de la fonction y admet une branche parabolique de direction verticale en —oo.

Partie 2 : Le z, nous le signons a la pointe de I’épée
On considere I’équation suivante d’inconnue y une fonction deux fois dérivable sur R :
(E+) Vo € RY, 22y 4+ 3|z|y + 3y =14 62°.

5. Soit y une fonction deux fois dérivable sur R . On pose pour tout ¢ € R, 2(t) = y (et). La fonction
x +— e” est deux fois dérivable sur R et a valeurs dans R et la fonction y est deux fois dérivable sur

R% . Donc par composée, | la fonction z est deux fois dérivable sur R*

. De plus pour tout z € R} et

tout t ER,onat=In(r) & x=c¢e' et onadonc Ve € R%, y(r) =z (In(x)). Par conséquent,

Vo € RY, Y (x) = %z’ (In(x)) et  y(x)= —%z’ (In(x)) + %z” (In(x)) .

3/29
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Par suite,
y solution de (E+])
& Vo e RY, 22y () + 3|x|y (z) + 3y(z) = 1 + 623
1 1 1
& VrxeRL, z? <—?z’ (In(x)) + ﬁz" (ln(x))) + 3z (;z' (ln(x))) + 3z (In(x)) = 1 + 623
& Vo e RY, —2 (In(x)) + 2" (In(z)) + 32’ (In(x)) + 3z (In (z)) = 1 + 62>
& vVt € R, 2(t) 4+ 22/ (t) + 32(t) = 1 4 6>

Conclusion, y est solution de (E+]) si et seulement si z est solution de

(G) vVt € R, () 4+ 22/ (t) +32(t) = 1+ 6.

. L’équation homogene associée est

(Go) vt € R, 2" (t) + 22/ (t) + 32(t) = 0.
L’équation caractéristique associée a est 72 4+ 2r +3 = 0. Soit A le discriminant associé, A =
4 — 12 = —8. Les racines sont donc complexes conjuguées et données par
—24 21v/2
rlzz“[:—hw\/i ot r=—1—iv2.

Par conséquent ’ensemble .7, des solutions de I’équation homogene est

R — R

yGOZ{ t — et (Acos(ﬂt)+Bsin(ﬂt)) '(A’B)GRQ}'

Cherchons une solution de

(G1) vVt € R, 2"(t) + 22/ (t) + 32(t) = 1.

. La fonction z; est deux fois dérivable sur R et

Soit a € R et 27 : R = R
t — a

21 est solution de (G & vVt € R, 0+3a=1 & a=

, R —- R }
Par conséquent, z; : PN % est une solution de (G4)).
Cherchons une solution de
(G2) VteR,  2'(t)+22(t) +3z2(t) = 6.

On note que 3 n’est pas une solution de I’équation caractéristique. Par conséquent pour A € R, on

cherche une solution de type 22 : ; : ]Ee?’t . La fonction 29 est deux fois dérivable sur R et
29 est solution de (G2l & vVt € R, 9N +2 x 3Ae3 +3 N6 = 6
& Vt € R, 18 X e3t = 63t
& 18A=6 car Vt e R, ¥ £ 0
1
< A= .
3

4/
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R —- R N . " .
Donc 25 : b 1t est une solution de (Gaf). D’oti, par le principe de superposition, la fonction
3

R —- R . . , .

Zp =21+ 22 P L est une solution de (G]). Conclusion, ’ensemble des solutions de (G)
33
est donné par
R —- R
Sa = A,B)eR?} .
G { b Lt (Acos (V) + Bsin (V) ‘( ) }

7. Soit y une fonction deux fois dérivable sur R . Posons pour tout ¢ € R, z(t) =y (et). Par la question
puis la question précédente, on a

y € Spy & z € (G)

& 3(A,B) € R?,Vt € R, z(t) = ! +363t et (A cos (ﬁt) + Bsin (\/it)) .

Or pour tout z € R, y(x) = z (In(x)). Ainsi, y € S, si et seulement si

3(A,B) € R?, Vz € R, y(z) = ”fmm +e7 ") (Acos (V2In(z)) + Bsin (V2In(z)))
& 3(A,B) eR:EVz e R, y(x) = ! _;xi% + % (Acos (\/iln(:):)) + Bsin (ﬂln(m))) .

Conclusion,

R — R% 2
S+ = PN 1—15)953+Acos(\/iln(:v))l-Bsin(\/ﬁln(x)) (A,B) e R* ;.

Partie 3 : Voila une solution branchée

On note . l'ensemble des fonctions deux fois dérivables sur R solutions de sur R tout entier. Soit
y € .. On pose y4 la restriction de y sur R’ et y_ la restriction de y sur R*.

8. Puisque y est solution de (E]) sur R tout entier, on en déduit que y est solution de la méme équation
sur R% , i.e. y; est une solution de (£+4]). Donc par la question précédente,

_ 1+ 3 N Acos (vV2In(z)) + Bsin (v21In(z))
3 x '

J(A,B) e R%Vr € RY | y(z) = y+(2)

De méme, y_ est solution de (E—|) donc

1

I(C,D) e R, Vz € RY, y(x) = y-(2) = 5

+ 323 1n (|2|) + Cz + Da.

9. Par la question précédente, on a directement que

. o1 3 3_ 1
i%y_(m)—ig%g%—?)x In (|z|) + Cx + Dx =3
<0 <0

Or par hypothese, la fonction y est deux fois dérivable sur R et donc notamment y est continue en 0.

Donc 1
y(0) = lim y(z) = lim y_(z) = 5.
<0 <0
Conclusion,
) 1
y(0) = limy () = 3.
<0

5/20
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10. Pour tout (A, B) € R%, on admet que
A 21 Bisi 21
ji A (V2In@) + Bsin (V2In(@)) 0 o 4 pog
z—0 x
x>0
Or, y est continue en 0 donc
1 . ) . 142 Acos (\@ln(x)) + Bsin (\@ln(x))
3 = ¥(0) = lim y(z) = limy, (¢) = lim —— + . :
>0 >0 >0
Donc
. Acos (V2In(z)) + Bsin (v2In(z)) ) ( 1+ :):3>
iy p = I (@) = —5— ) =w(0) =3 =0.
>0 >0
D’ou Acos(ﬁln(x))zB sin(v2In(z) existe et nécessairement, A = B = 0. Conclusion,
1 3
Vo e RY, y+(z) = —;:c .

11.

12.

Pour tout z > 0, on a

= par la question

z—0 T
14+a® 1
__3 3
x
2
3

Par conséquent, |y est dérivable a droite‘ et

lim ¥+@) = y(0) _
x—0 z—0
x>0

Pour tout z < 0, on a

— (0 (x) -4
y(fU; _ 36( ) _Y (‘2 3 par la question [0/
$+323In(|z|) + Cx + D23 — &
x

= 32?In (|z|) + C + Dx?.

Donc
Y@ =0,
x—0 x—0
<0

Or la fonction y est dérivable deux fois sur R donc dérivable en 0. Donc

— (0 — (0
i Y@ —9(0) _ . y(@) M):y@)
z—0 x—0 z—0 z—0
>0 <0
Donc par ce point et la question précédente,
y'(0)=0=C.

Donc

Vr e R*,

1
y_(z) = 3 + 323 1In (|z|) + Da3.

6/29
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13. Par les questions précédentes, nous avons vu que y est dérivable en 0 et deux fois dérivable sur R* et

14.

sur R (comme composée de fonctions qui le sont). Il nous reste donc a montrer que y est deux fois

dérivable en 0 i.e. que
y'(z) —y'(0) y'(z) —y'(0)

lim = lim
z—0 x—0 xz—0 x—0
z<0 >0

Par ce qui précede, on a y'(0) = 0. Calculons

ve>0, g =y = (
Ve <0,  y'(2)=y (2)
/
_ (% + 328 Tn (|a) +Dx3>
1
= 92%In (|z|) + 3303; + 3Dz?
=92%In(|z|) + 3 (1 + D) 2*

Ainsi,
/ / 2
lim (= (0) :limm Ozlimxzo
x—0 x—0 x—0 1 — x—0
x>0 x>0 >0
et
/ ) 21 1 D 2 _
o Y@ = y0) 952 In () +3(1+ D)a? 0
z—0 x—0 z—0 x—0
<0 <0
=lim 9zln(|z|) +3(1+ D)z
x—0
<0
=0 par croissance comparée.
Ainsi, on a bien
/ o / o
i Y@ =¥ _ (@) —y(0)
xz—0 x—0 z—0 x—0
<0 >0

Donc y est deux fois dérivable en 0 et y”(0) = 0. Conclusion,

’y est deux fois dérivable sur R. ‘

Les étudiants curieuz pourront s’amuser ¢ démontrer que y n’est pas trois fois dérivable en 0...

Par les questions précédentes, nous avons vu que SI y est une solution de ALORS,
yi(x) = # sixz >0

dD e R, Vz € R, y(z) = % siz=0

y—(z) =3 +323In(|z|) + D2® siz <O,

Synthése. Nous avons également vu que cette fonction était continue en 0, dérivable en 0 car 3/ (0“‘) =
Y (07) = 0 et deux fois dérivable en 0, y”(0) = 0 et méme deux fois dérivable sur R tout entier.
Vérifions qu’elle est solution de (E]). Pour tout z > 0, y(z) = y(x) et y; est une solution de (E4]).
Donc y est une solution de sur R%. De méme, pour tout z < 0, y(r) = y—(x) et y_ est une
solution de . Donc y est une solution de (E]) sur R* . Enfin, en 0 :

1
0%y”(0) + 30| 4'(0) + 3y(0) =1+ 6 x 0° & 3 X 3= 1 ce qui est vrai.

7/
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Donc y est bien une solution de sur R. Conclusion, I’ensemble des solutions de (E]) est

R —- R
S = dta siz>0 |DeR
T
3 +32%In(|z|) + Da® siz <O0.

Notez que bien que (E|) soit une équation différentielle d’ordre 2, un seule constante, un seul degré de
liberté apparait dans l’ensemble solution. Cela provient du fait qu’elle n’est pas résolue en y" et qu’un
raccordement est nécessaire.

Probléme II - Matrices

2 1 1
On considere la matrice A= | —1 2 —1]. On pose N = A — Is.
-2 0 -1

Partie 1 : Gauss ouvre le bal

1. On a les égalités suivantes :

2 1 1 1 00 1 1 1
N=A-IL=|-12 -1]-{000]=|-11 -1
-2 0 -1 001 -2 0 -2
Puis,
1 1 1 1 1 1 -2 2 -2
N2=|-11 -1]x|-11 -=1]=l0 0 0
—2 0 -2 -2 0 -2 2 -2 2
Enfin,
1 1 1 -2 2 -2 000
N3=NN%2=|-11 -1 0 0 0 |]=(00o00
—2 0 -2 2 -2 2 000
Conclusion,
1 1 1 -2 2 -2
N=|-11 -1}, N2=|(0 0 o0 |, N3 = 05.
-2 0 -2 2 -2 2
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x
2. Soit A € R. Soit X = {y] € R3. On a les équivalences suivantes :
z

X €. & AX =) X

- (G-l

20 +y+z Az
& —x+2y—z| = | Ay

-2z —z Az
2-XNz+y+2=0
& —z+2-Ny—2=0

-2z —-(1+X)z=0

—z+2-Ny—2=0
& 2-XNzx+y+2=0 Ly < Ly .
—2z—(1+X)z=0

On obtient alors que

-+ 2-Ny—2=0 I Lot (2-NI
2 . 24 Lo+ (2— 1
Xesh o (1+42-N)y+(1-(2-1)z=0 Lo Lo 9L,
—22-Ny+(-1-A+2)2z=0
—z+2-Ny—2=0
& (N =4x+5)y+(A-1)z=0
20 =2)y— (A — 1)z—0
—r+(2-Ny-z=
& (A —4X+5)y+(A-1)z2=0 L3« L3+ Lo
()\2—2)\+1)y:0
—r+(2-Ny—z=
& ()\2—4)\+5)y—|— z2=0
(A—1)%y =0.
Premier cas, A\ = 1. Alors,
—r+y—2=0
XeA =1 2y=0
0=

Ainsi,
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Deuxieme cas, A # 1. Alors,

—rx—2=0
X c A & (A-1)z=0
y=20
—xrx—2z=0
& z=0 car A #£ 1
y=20

Dans ce cas,

Partie 2 : Méthode 1, Newton le rejoint pour former un binéme

3. Soit n € N. Par définition de N, on sait que A = I3 + N. De plus, N = 03 donc pour tout k > 3,
N* =03. Or N et I3 commutent. Donc par la formule du binéme de Newton, on a

n

A= (4N =Y (Z) NFE =% (Z) N*,

k=0 k=0
Sin > 2,
-1
ar = (YN0 (PN () N2 05 = v 4 T D 2
0 1 2 2
On note que cette formule reste vraie si n = 0 ou n = 1. Ainsi, pour tout n € N,
1 00 1 1 1 n(n—1) -2 2 =2
A"=(0 1 0] +n| -1 1 -1 +T 0 0 O
0 0 1 -2 0 -2 2 -2 2
1 00 1 1 1 -1 1 -1
=({010]+n[-11 —-1)+®-n)| 0 0 0
0 0 1 -2 0 -2 1 -1 1
1+ 2n —n? n? 2n — n?
= —n n+1 —-n
n? —3n n—n? n?>-3n+1
Conclusion,
1+ 2n —n? n? 2n — n?
Vn € N, A" = -n n+1 -n

n? —3n n—n? n?2—-3n+1

4. En particulier, pour n =5, on a

1+10—-25 25 10 — 25 —14 25 —15
A® = -5 6 -5 = -5 6 -5
25—-15 5-25 25—15+1 10 —-20 11
Conclusion,
-14 25 —15
A= -5 6 =5
10 —20 11

10/20]
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Pour tout n € N, on admet I'existence de trois réels (ay,, by, c,) € R et d'un polynome @, tels que
Vz € R, 2" = (z —1)* Qu(x) + anx® + by + cp.

5. Soit n € N, n > 2. Les fonctions z — z" (z —1)%, 2 — Qn(z) et  — az® + bx + ¢ sont deux fois
dérivables sur R en tant que fonctions polynomiales et

Vx € R, na" ' =3(x—1)2Qnx) + (x — 1)° Q' (x) + 2anx + by.
En dérivant une seconde fois, pour tout z € R,
nin—12"2=6x—-1)Qnx)+3x—-1*Q (2)+3 (-1 Q () + (z —1)> Q" (z) + 2an,
6(x—1)Qu(x)+6(x—1)2Q (x)+ (z —1)* Q" () + 2an.

Conclusion, pour tout x € R,

nz" ' =3 (z —1)2Qulz) + (x — 1)° Q' (x) + 2anx + by,
nin—1z"2 =6(x—1)Qux)+6(x—1)°Q,(z)+ (x —1)* Q' () + 2ay.

6. Soit n € N, n > 2. Par la question précédente, en prenant z = 1, dans les deux égalités on a

n = 2a, + b, N n = 2a, + b,
n(n—1)=_2a, Qp, = Ln;l)

n(n—1
an, = (2 ).

o {bn:n—Zan:n—n(n—l):—n(n—2)

Et puisque pour tout x € R, 2" = (z — 1)3 Qn(7) + apz? + by + ¢y, en prenant z = 1 encore une fois,

on obtient
nn—1
1:an+bn+cn:(2)—n(N—2)+Cn
-1
22 —dn—n?+n+2 n’-3n+2 (h-1)(n—2)
B 2 - 2 - 2 '
Conclusion,
—1 ~1)(n—2
vn}z? an_n(nz)7bn—_n(n—2)acn—(n)2(n).

7. Soit n € N, n > 2. Par la relation 2™ = (z — 1)> Qp (%) + anx? + by + ¢u, on en déduit que

A" = (A= I3)° Qn (A) + anA? + by A+ cols = N° Qn (A) + an A% + by A+ cnls = an A% + by A+ cpls.
=03

Conclusion, par la question précédente,

n(n—1)
2

(n—1)(n—2)
2

A" = A2 —n(n—2)A+ Is.

11/20



Mathématiques PTSI, DM5 Cor 2025-2026

8. En particulier, pour n = 5,
A® = 10A4% — 154 + 615.

Or
2 1 1 2 1 1 1 4 0
A2=1[ -1 2 -1 -1 2 —-1}|=(-2 3 -2
-2 0 -1 -2 0 -1 -2 -2 -1
Ainsi,
1 4 0 2 1 1 100 ~14 25 —15
Ad=10(-2 3 —-2]-15(-1 2 -1]+6[0 1 0)=(-5 6 -5
2 -2 -1 2 0 -1 00 1 10 —20 11

Conclusion, on retrouve bien le résultat de la question

—14 25 15
A= -5 6 -5
10 —20 11

Partie 4 : Soyons carrés pour éviter de se prendre les pieds dans les racines

110

On pose T' = et M =T — I3. On s’intéresse a déterminer I’ensemble des racines carrées de T :

0 11
0 01
Hr={Se€MR)|S*=T}.
Pour ce faire, on pose également %7 I’ensemble des matrices commutant avec T :
¢r={SecsR)|TS=5T}.
On admet le résultat suivant
¢ = {als+bM +cM? € 45 (R) | (a,b,c) eR*}.
9. Soit S € Zr. Alors, par définition, S? = T'. Par suite,
TS = 5°S = 8% =88%=ST.

Donc S € . Ceci étant vrai pour S € Zr quelconque, on en déduit que

10. Soit S € Zp. Alors par la question précédente, on a S € %p. Donc d’apres ’énoncé,

3 (a,b,c) € R?, S = als + bM + cM?.

Donc
T = 5% = (al3 + bM + cM?) (al3 + bM + cM?)
= a’I3 + abM + acM?® + abM + b M? + beM® + acM? + beM? + 2 M*
= a’I3 + 2abM + (b® + 2ac) M? + 2beM? + 2 M*.
Or

010
M=T-I;=[0 0 1
000
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Donc
010 0 10 0 01
M*=(0 o0 1|00 1]=([000
0 00 0 00 0 00
Puis,
0 10 0 0 1
MP=[0 0 1|[0O O O]=03
0 00 0 00
et donc M* = 03. On obtient alors que
T = oI5 + 2abM + (b* + 2ac) M? + 2beM? + 2 M*
100 0 10 0 01
T=a*{0 1 0|+2ab[0 0 1|+ (" +2ac)|0 0 0
0 01 0 00 0 00
1 10 a’? 2ab b? + 2ac
01 1)]=(0 a? 2ab
0 0 1 0 0 a?
a’?=1
2ab =1
b2 4 2ac =0
a=1 a=-—1
1 1
%—1—20:0(:)0:—% i—Qc:O(:)c:%
1 1 11
13 -§ -1 -3 3
S=als+bM+cM*=(0 1 3 ou S=[0 -1 —-%1])=-5.
0 0 1 0 0 -1
—_———
=S
Ainsi,
1y o-h\ -
#Zrcilo 1 & |10 -1 -3
0 0 1 0 0 -1
1 1
L3 -3
Réciproquement, si S =5S;=1 0 1 % , alors
0 0 1
1 5 —3 1 5 —3 1 10
Sg=10 1 3 01 3 )]=(011])=T
0 0 1 0 0 1 0 01

De méme, si S = —Sp, alors S% = (=Sy) (—Sp) = S5 = T. Donc {Sy ; —So} C %r. Conclusion, Zr
possede bien exactement deux éléments :

1
Hr = 0
0

O ==
= N[
o=
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Partie 5 : Pour gagner c’est comme au baseball, il faut savoir changer de base

1 1/2 -1
Onpose P=| 0 1/2 1/2
-1 0 1

11. On applique l'algorithme de Gauss-Jordan :

1 1/2 -1
P=( 0 1/2 1/2
-1 0 1
1 1/2 -1
;; 0 1/2 1/2 Ly<+ L3+ L,
0 1/2 0
1 1/2 -1
~ 0 1/2 0 L3<—>L2
“\o 172 1/2
1 1/2 -1
~ 0 1/2 0 Lg(—Lg—LQ
“\o 0 172
L 1/2 -1 Loy + 2Ly
A Ly « 2L
“\o o0 1 3 3
100
1
gﬂ 010 Ll(*LlfingLLg
00 1

On obtient donc que P > I3, donc

Iy =

R R
R T T T R
—_— OO0 O, O OO

o O = OO = OO

1 0
~l 1 0 1
Z\21 1 41
1 0 0
~ 2 0 2
Z\ 2 2 2
2 2 -3
~ 2 0 2
Z\ 22 2 2

la matrice P est inversible et P~! =

On n’a pas oublié naturellement de vérifier son résultat :

1 1/2 -1 -2
PPl=|( 0 1/2 1/2 2
-1 0 1 —2

12. A l'aide de la question précédente, on a

2 1 1

PlAPp=pP'| -1 2 -1

-2 0 -1

-2 2 -3 1

=1 2 0 2 0

-2 2 -2 -1
110
=(0 11
00 1

Conclusion,

PlAP=T.
14

2
0
2

1
0

-1

3/2
1/2
~1

-2 2 -3
2 0 2
-2 2 -2
-3
2 | =1L
-2
1/2 -1
1/2 1/2
0 1
~1/2
1
1
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On considére

Zr={Be.sR)|B*=A}.
13. Soit B € .#5 (R). Posons S = P~!BP. On a les équivalences suivantes :
B € %Za & B’=A & P'B’P =P AP
P 'BPP'BP=T d’apres la question précédente
S?=T
S € %r.

t o

14. Avec les notations de la questions précédentes, pour B € .#5 (R)
B e %, & S e Zr.

1

Donc par la question [10., en posant Sy = | 0
0

O o=

Be %y o S =25 OouU S =-S5

& P1BP =25, ouU P1BP=-5,
& B =PSyP! ou B=—-PSyP L.
Calculons,
1 3 -3 -2 2 -3
PSP '=prP(0 1 1 2 0 2
0 0 1 -2 2 =2
1 1/2 -1 —3/4 T/4 —T7/4
= 0 1/2 1/2 1 1 1
-1 0 1 -2 2 =2
7/4 1/4 3/4
= -1/2 3/2 —1/2
—5/4 1/4 —1/4
Conclusion,
WA LT -1 -3
Aa={7(-26 -2):7|2 -6 2
-5 1 -1 5 —1 1

11 est possible de controler son résultat en vérifiant que S3 = A.

Probléme III - Analyse asymptotique

On pose pour n = 1,
tan!!! = tan

Puis par récurrence, pour tout n € N*,

tan"t = tan otan™ = tanotano---otan

n—+1 fois

ou l'on rappelle que o désigne la composition.
Partie 1 : Je compose donc je suis

1. On pose I} = [—5; §] et Io = [—arctan (§) ; arctan (§)].
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(a) La fonction tan est continue et strictement croissante sur Iy C ]—g ; g[ Donc une conséquence
du théoreme de la bijection est

tan (1) = [tan (—Z) ; tan <%)} =[-1;1].

De méme la fonction arctan est continue et strictement croissante sur [—1; 1] C R, donc

™

arctan ([~1; 1]) = [arctan (~1) ; arctan (1)] = |7 7

}:h.

(b) On a par définition,
x €tan~t ([—1;1]) & tan(z) € [-1; 1] & dk € Z, —%—Hﬁrga:g %+k7r.

Conclusion,

tan"! ([-1;1]) = kU [—% + km; % + kw} .
ez

(¢) La fonction tan est strictement croissante sur I = [—arctan (7) ; arctan ()] € |=%; 5[ Donc

tan (Iy) = [tan (— arctan (%)) ; tan (arctan (%))} = [—%; g] =1.

Donc d’apres la question précédente,
tanl? (I) = tan (tan (1)) = tan (I;) = [-1; 1].

Conclusion,

tan? (1) = [-1; 1].

On admet dans la suite que pour tout n € N*| il existe I,, = [—n,, ; n,] un voisinage de 0, centrée en 0, avec
n, € RY tel que tanl™ est bien définie et méme €° sur I,,. On suppose que pour tout n € N*,

In+1 c I,.
2. (a) On procede par récurrence sur n. Pour tout n € N*, on pose
P(n):  «tanl™ est impaire sur I,,. »

Initialisation. Si n = 1, alors tan est une fonction impaire et I; est centré en 0. Donc tan est
impaire sur ;.
Hérédité. Soit n € N*. Montrons que #(n) = Z(n+ 1). Supposons #(n) vraie et montrons
que Z(n + 1) est aussi vraie. Par hypothese I,,11 est centré en 0. De plus pour x € I, 41, on a
—x € Ingq et

tan"*!(—z) = tan (tan["}(—az)) .

Or —z € I,41 C I, et par hypothese de récurrence, tanl” est impaire sur I,,. Donc tan["}(—x) =
—tan™(z). Ainsi,
tan" " (—z) = tan (— tan!”! (x)) .

Or la fonction tan est impaire sur son ensemble de définition donc

tan"t1(—2) = —tan (tan[”] (:L‘)) = —tanl""!(z).

Ceci étant vrai pour tout x € I, 11, on conclut que tan[ ™1 est impaire sur Lot
Conclusion, pour tout n € N*, &(n) est vraie.

Conclusion, | pour tout n € N*, la fonction tan™ est impaire sur I,, |
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(b) Soit n € N*. On sait que la fonction tan[™ est € sur I,, un voisinage de 0. Donc on en déduit que
la fonction tan™ admet un développement limité & Pordre 5 en 0 : il existe (Gny by Croy Uy Vs Wyy) €
R3 tel que
tan[™ (x) =, Un + anx + vpx? + bpa® + wpzt + ez’ + o (m5) .
T—
Or d’apres la question la fonction tan™ est impaire donc

Up = Uy = Wy, = 0.

Conclusion,

tan(™ () =, Gn + bz 4+ cpz® + 0 (CL’5) .
z—

Partie 2 : Il n’y a que le premier pas qui coiite

On admet dans la suite que pour tout n € N*, il existe (an, bn,c,) € R? tel que

tan(™ (z) =, nt + b + cpa® + o (a;5) .
T—

3. Par le cours, on a

Et sa forme normalisée est donnée par

in(z) = (1 C T o )
sin(z) = = 1 o0 o(z")).
4. On rappelle également que
‘ 2 gt A
cos(x)zl—?qLﬂJro(x ).

NB : puisque la forme normalisée du sin permet la factorisation d’un x, nous gagnons un ordre pour
le cos. De plus

1 2 2
]
Posons pour tout z € |- ; 5[, u(z) = —% + % + o0 (z*). Alors,
* u(x) ijO
2 4
¢ —ule) = % -5t o(at)
2 2 4
o De plus u(x) ~ —% donc u*(x) T Donc
4
2 _ X 4
u (x)x:>0 4 +O($)
. 2 _ 4
Enfin o (u?(z)) o o (z*)
Ainsi,
1 1 2 ot 4 ot 4 4 r? 5t 4
= = 1+— - — = 14+—=+— .
cos(z) 250 1+ a(@) so0 - | 2 g To) o) o) s 145 45 o)
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Par produit,

sin(z) ( 3 x5 ) ( x? 5t 4 >
t = = [ 1 R -
an) = 5@ oo \F T It o) J\1+ 5 + 5y +oleh)
— 3 55 5
= T o+ %+ o(2Y)
3 5
Sk IS
5
+ 55+ o(2°)
+ o(a?)
3=l 25-10+1 ;
S0t T T v Ty v e
3 225 5
x:O + ? + E +O(JZ )
Conclusion,
3 220 5

Et par unicité du développement limité, on retrouve bien que

o =g et |a=o|

Partie 3 : La meilleure fagon de marcher, c’est d’itérer

5. Soit n € N*. On pose u,(z) =, +bpa® + ez 4o (:z5)
T—

(a) Par produit nous avons en premier lieu,

u%(x) = (anfv + by + cpr® + o (x5)) (anfv + by + cpr® + o (x5))
o atz? +  apbpat (x5)
+ apbpa? (x5)
o(z°)

2,2 4
=, @ + 2anbnw +o( °).
Par suite,

up(2) = un(@)up(2) = (ant +bz® + caz® +0(27)) (apa® + 2anbpa’ + 0 (2%))

o ale® + 2aiby,a® + o(ad)
+ albr® + o (335)
+ o(a?)
_ 43,3 2 5 5
= @+ 3aybaa” 40 (2°).
Conclusion,
ul () = alz® + 3aZb,z® + o (2°) .

(b) On note que, si a, # 0, uy(z) ~, An- Donc par élévation a la puissance, on obtient que
r—r

ud () 0 % ad .
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Ainsi
’ 5 _ 5.5 5
u, () =, @’ +0 (2°).
x

Sian, =0, up(z) 200 (z) et on retrouve que u? () 0O (z°) = a}a® 4 o (). Conclusion,

x—0

u, () = adz® 4 o (x5) .

Le calcul u?(z) x ul(x) fonctionnait aussi trés bien.
(c) En utilisons les résultats précédents, on a

tan (u) uiou+§+1—5+o(u5).

De plus en posant uy () =, @ + b3 + epz® + o (:c5), alors
T—

o up(x) = 0.

3 3
up(x) _ ap 3 27 .5 5
. = x° + azbpx® + o (2°).
3 s-0 3 n-n ( )
2u}, () 2d3 5 5
o = =2z’ t+o(zx°).
1 50 15 ( )

o Enfin, o (u,(x)) =0 (7).

Par conséquent,

tanl"t1(z) = tan (tan[”] (:U)) = tan (u,(z)) =, Wt + bpt® 4+ cp®  + o(a°)
€T

+ @x?’ + a%l;n:ﬁ + o(z°)

+ S 4 o (2?)

+ o(a?)

Conclusion,

[n+1] ay 3 2a;), 2 5 5
tan (m)xioana:—i— ?—i—bn z° + 1—5+anbn+cn T —i—o(a:).

(d) Or par définition de ap41, bpt1 et cpt1, on a également
tan" 1 (z) S Gnt1T + bp12° + cpp12’ + o (2°).

Donc par unicité du développement limité, on en déduit que

Gnp41 = Qn
ay
bn+1 = 3 + bn

2a5 2
Cnt1 = T2 + apbn + cp.

6. (a) Pour tout n € N*, on a a,41 = a,. Donc la suite | (@), - est constante | et donc vérifie

Vn € N*¥, an = aj.

Donc par la question [4.] on en déduit que

’VnGN*, an = 1.
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(b) On en déduit alors que pour tout n € N*,

1
=+ bn.
3+

w| £,

bn+1 = + bn

La suite

(bn)pen- est donc une suite arithmétique de raison r = £ | Donc pour tout n € N*,

-1 -1 1
bp=(Mn—-1)r+b = nT—Fbl = n3 +§ d’apres la question [4]

Conclusion,

VneN*, by,

n
3
(c) Soit n € N*, n > 2. Par ce qui précede on a pour tout k € N*,

¢ —%—i—aQb fa=2 it
k+1 — 15 LYk k — 15 3 k-
Ainsi,
n—1 n—1
2 k:) 2(n—1) 1(n—-1)n n-—1
_ — =4z = 4 .
;(C’“H ) ;1(15+3 5 3 2 g (45
Conclusion,
n—1
n—1)Bn+4
e
k=1

(d) Soit n € N, n > 2. On remarque que Y71 (ck+1 — cx) est une somme télescopique. Par consé-
quent,

n—1

2
Z (Cke1 — Ck) = Cp—141 —C1 = Cp — C] = Cpp — G d’apres la question
k=1

Ainsi, a l'aide de la question précédente,

(n—l)(5n+4)+2 n?—n—-4+4 (bn—-1)n
Cn = —_— = = .
" 30 15 30 30

On note que la formule reste vraie si n = 1. Conclusion,

. (bn—1)n
v N = ———.
n € N¥, c 30

7. En utilisant les questions précédentes pour n = 5, on obtient

24 x5 24
a5 =1 et b5:§ et s = 30 :E:4.

Conclusion,

tanl)(z) =zt oz +42° + o (ms) .

T 3
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