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Correction du Devoir Maison 6
analyse asymptotique, ensembles et
applications

Du jeudi 22 janvier

Probleme I - Analyse asymptotique

On considere la fonction
R — R

T ln(1+w2)—x.

I
Partie 1 : Admirons les courbes heu la courbe de f

1. La fonction logarithme est définie et méme dérivable sur R’ mais pour tout x € R, 1 + 22 >1>0.

Ainsi,
’ f est déifnie et méme dérivable sur R.
De plus,
2x 2z — 1 — 22 2 —2x+1 (x—1)
v E R ! == — 1 = = — P — .
veR S0 =11p 1+ 22 1+ a2 1+ 22
Conclusion,
2
' (z—1)
Vr € R, f(z) T2

2. (a) Pour tout z > 0, on a
1 1
f(a:):ln(1+:n2) —m:—m+ln(m2)+ln<1+ﬁ> :—ZE+21D($)+1D<1—|—9).

Or In (1+9712) — 0 donc

T—>+00

1
ln<1+—) < 2hn(x) <« -

;1:‘2 T——+00 Tr——+00

Conclusion,

(b) On a pour tout z > 0,

f(x)+2x=2In(z)+1n (1—1—%) — +o0.

T—r+00

Donc la fonction f présente ’une branche asymptotique de direction ¥y = —x | mais ne possede
pas d’asymptote en +oo.

i o, u? 2 _ 1 ..
(c¢) On sait que In (1 + u) Sou— T to (u?). Posons u = — ST 0. Ainsi,

1+ 32) 5wz o)
U R e T2t PO\ )

flz) = —x+2ln(a:)+;2—+0<1).

T—-+00

D’ou
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3. Par la question [I]on a

(z —1)
1422
Donc pour tout z € R\ {1}, on a f/(x) < 0. Donc la fonction f est strictement négative sur R sauf en
un seul point. On en déduit que la fonction f est strictement décroissante sur R. De plus, la fonction
f étant dérivable sur R elle est notamment continue sur R. Donc par le théoréeme de la bijection, on
en déduit que f définit une bijection de R dans J = f (R) et de plus,

Vx € R, f(z)=

J=f(R)=| lim f(x); lim f(x)|.

T—r—+00 T——00

Or par la question () ~ —z donc

T—r+00

li = lim —z = —o0.
A I = Bt o= moe

De méme, pour tout x < 0, on a
9 1 1
f(@) ==z +In(z) +1n 1+ﬁ =—z+2In(|z|) +In 1+ﬁ .

D’ou,

fl@) ~ -=

Et donc

lim f(z)= lim —x = +oc.
T——00 T——00

Attention, bien que le résultat soit opposé, la fonction f n’est pas impaire pour autant, ni paire
d’ailleurs. Donc J = |—o00; +00[ = R. Conclusion,

‘ f définit une bijection de R dans J = R.

On note g = f~! sa fonction réciproque.

Partie 2 : Et-qui-va-lent..tement va stirement

4. Soit n € N. La fonction f est définie et méme de classe €™ sur R donc en 0. Donc d’apres le théoreme
de Taylor-Young, on en déduit que

‘ f admet un développement limité a I'ordre n en 0.

5. Rappelons que In (1 +u) = u— “72 + o0 (u?). Posons cette fois u = 22 — 0. Dés lors,
u—0 z—0
4
2y _ .2 % 4
ln(1+$ ) ST f?qto(x )
Conclusion,

» ! 4

f(x) S, e —?4—0(37 )-

6. Puisque f est €% en 0, on sait par la formule de Taylor-Young que

" 3) (4)
f(zx) o f(0) + f'(0)z + / 2(0) 2+ / 6(0)933 + / 24(0) zt 4o (334) .
Donc par unicité du développement limité, a 1’aide de la question précédente, on en déduit que
() 1
24 2
Conclusion,
F90) = —12.
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7. De méme que précédemment, pour tout n € N, n > 2, on a

In (14 2?) i z::

+ o (z*").

Donc
-1 ) k+1 2k

f(z) —HT+Z +o ().

Notamment on remarque qu’a part —z, tous les termes d’ordre impair sont nuls. Or la fonction f
étant de classe €2" en 0, par la formule de Taylor-Young, on a

z—0

2n (k) (0
f(x =, ! k'< )mk +o (332") )
k=0

Donc par unicité du développement limité,

f(2k+1) (O)

Vk €€ [1;n—1], (carn >2) W:

Ceci étant vrai pour tout n > 2, on conclut que,

Vk e N*,  fZRH(0) = 0.

8. On sait que
- _ 2 2
fl@) = —w+a+o(2%).

On en déduit donc f admet pour tangente en 0 la droite d’équation

Y= —2x.

De plus,
f@)+z ~ 22 >0

z—0

Or deux équivalents ont méme signe au voisinage du point considéré donc au voisinage de 0, f(z)+x >
0 et donc

‘le graphe de f est au-dessus de sa tangente au voisinage de 0. ‘

9. Je pressens un ordre 5... On sait par la question [7] que

't  af 6 2t 5
f(x)xio—x—i—x —?—f—?—ko(az)mio—x—kx —?—1—0(1:).
De plus,
—2?cos(z) = —x? (1—x2+0(:ﬁ3)> = —$2+£4+0($5)
z—0 2 T 2

D’autre part,

1 23 20 3 240
2sh(z) — tan(x) = <2x+x+x—|—o($5)—x—$—$+o(ﬂs5)>

z—0 3 6 120 3 15
5 5

SR E o)
5 5

S o)
5

S T
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Do,

hz) = fz)— 22 cos(x) + 2sh(z) — tan(z)

S

= —x 42 -5 4o (:1:5)
—z? +Z +o0 (2°)
+x 4, (2°)

60
Tz’ 5
xiO 60 +o (33 ) .

IS

Tiens oui c¢’était bien de ’ordre 5. Conclusion,

725

Partie 3 : Une technique primaire mais primordiale, la primitivation

10. (a) Par la question 5., on a
4

o 2 L 4
f(x)x:0 T+ 2—}—0($).

De plus f est €* en 0 donc f’ existe et f' est méme €2 en 0. Donc par le théoreme de Taylor-
Young, il existe (ag,a1,az,a3) € R* tel que

() =, 0 + a1z + asz® + azz® + o (x?’) .

T—r

Or f est une primitive de f sur R donc par le théoréme de primitivation des développements
limités, on a
a a a

f(x) (0) + apz + 511'2 + §2$3 + f:ﬁ‘l +o(z).

Donc par unicité du développement limité :

xiO f

f(0) =0 OK

ag —1
a():—l

01:2
G =1 &
. 02 =
$=0
as _ 1 a3:—2
\ 4 = 2

Conclusion,

f'(2) =, —1+ 2z — 223 +0(:L'3) .

T—

On vérifie que cela correspond bien a la dérivation du développement limité de f.

(b) Par la question précédente, au voisinage de 0, on a

1 1 1
f(z) 20 —1+ 2z — 223 + 0 (23) 250 1 — 2z + 223 + 0 ()

. 1 2 _,3 3 _ 3 3
On sait que 1, =1 —u+u”—u + o (u*). Posons u(x) = —2z 4 22° 4+ o (2%). Alors,
o u(x) — 0.
z—0

e De plus,

u(z)® = (=224 22%+0 (%)) (—22 +22° + 0 (2°)) =

z—0 T—

. 4x? +0(x3) )

4/i3
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o Puisque u(z) ~ —2x, alors u(x)® ~ —8z3 et donc

x—0

r—0

u(z)® = -8z 4o (IL‘3) .

« Enfin o (u(x)?) =, («?).

Des lors,

Conclusion,

11. Par la question [T} on a

= 14 (=2)(—z) + —
:01+2$+3x2+4x3+0(x3).

Donc
Or, on a
1 2
= 1 — X =
(1—2)? ( ) =0
x—0
xr—r
Ainsi,
1
[z

= —(1+22 -2z +o(2?)
x—0
+422 +o (2?)
+8z%  +o (z?)
=" (1+ 22 + 42 + 62° + 0 (%))
= —1—2:5—4362—6333—1—0(963).
0

xT—

= —1—2x—4x2—6x3—|—0(

—(1+2%) (1+ 22+ 32° +42° + 0 (7))

= —1-2z —3z*—42®+o0(2?)

—22 223 +0 (x?’)
3 |

Oooh! On retrouve le résultat de la question précédente :

f'@) e

= —1—233—4:02—6:63—}—0(1’3).
0
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Partie 4 : Et le DL fut

12.

13.

14.

Par ce qui précede, on a

o la fonction f est strictement monotone (décroissante) sur R donc sur |—oo; 1[ et sur ]1; 4o00],
o la fonction f est dérivable sur R et donc sur |—oo; 1] et sur ]1; +oo],

e Pour tout =z € R,
2
/ __(x_l)

Donc pour tout = € |—o0; 1, f'(z) # 0 et de méme pour tout x € ]1;+oo], f'(z) # 0.

Donc en appliquant le théoreme de la dérivée de la fonction réciproque sur I’intervalle |—oo; 1] d’une
part et sur Uintervalle |1; 4+o00[ d’autre part, on en déduit que g est dérivable sur f (]—oo;1[) et sur
f(J1;400[). Or f(1) =1n(2) — 1 et par le théoreme de la bijection,

f(=00s1) = | f(1); lim f(z)| =]In(2) = 15+00][ et  f(Jl;+00]) =]—00;In(2) - 1[.

T—r—00
D’ou,
g est dérivable sur J' = R\ {In(2) — 1}.
De plus, .
vy e J, Jdy) = ———.
) [ (9(y))
Donc par la question
1+g(y)°
weld, Jdy=-—="5
(1—g(y))”
On pose pour tout k € N,
P (k) : «geEr (J,R).»

Procédons par récurrence.

Initialisation. Si k = 0, alors par la question précédente, on sait que g est dérivable et donc continue
sur J'. Donc g € €° (J',R), donc Z(0) est vraie.

Hérédité. Soit k € N. Montrons que & (k) = Z(k+1). On suppose que & (k) est vraie et montrons
que Z(k+1) lest aussi. Par hypothese de récurrence, g est €* sur J'. De plus, puisque ¢ est bijective,

si y # In(2) —1 = f(1), alors g(y) # 1. Donc pour tout y € J', (1 —g(y))? # 0. Donc la fonction
1+9(y)?
Y ew)?

s’annule pas sur J'. Or pour tout y € J', ¢'(y) =
€+ sur J'. Donc Z(k + 1) est vraie.

Conclusion, pour tout k € N, Z(k) est vraie i.e.

est €% sur J' comme somme et quotient de fonctions €% dont le dénominateur ne

2
_%, Donc ¢’ est %% sur J. Par suite, g est

VkeN, ge%"(J,R).

Par la question précédente, g est € sur J’ donc notamment en 0 (car In(2) — 1 # 0) et donc ¢’ est
€3 en 0. Donc par le théoréeme de Taylor-Young, on en déduit que

g, respectivement ¢’, admet un développement limité a l’ordre 4, respectivement 3, en 0. ‘

On note dans toute la suite (ag, a1, az,as,as) € R5 les coefficients du développement limité de g en O :

15.

9(y) yo0 %0 + a1y + agy® + azy® + asy* + o (y4) .

Puisque f(0) = 0 et que g = f~!, on en déduit que g(0) = 0. Conclusion,

g(0) = 0.

/2
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Partie 5 : Méthode 1, un DL et la vie est plus belle
16. Par la question [5.]on a

2 z? 4
f(zx) o —xr+x° — 5 +0(33 )
Donc
e De plus,
f(z)? =, (—x +a?-Z 4o (z4)) (—a: +a? L 4o (334))
= z2 —3 +o (:n4)
z—0
—z3 4+ a2t +o(2?)
+o (J;4)
= x2—2x3+x4+0(az4).
z—0
e Puis,
f(z)? = (—x + 22— = +o (:U4)) (x2 —28 + a2t 4o (m4))
= —23 422* 4o (:U4
x—0

o Comme f(z) ot alors f(x)4 o z* et donc

f(x)t = 934+0(x4).

z—0

e Enfin, o (f(2)*) = o(a?).

z—0

Forts de ces calculs, nous obtenons donc que

g (f(2) =, oS () + aaf (2 + asf(2)* + aaf (@) + 0 ((2)")

= —a1x +a1m2 —m% +o (w4)
z—0
+asx? —2a923 +asxt o (x4)
—azx®  +3azz? +o (x4)
+a4x4 “+o0 (334)
+o (a;4)
=, + (a1 + az) 2% — (2a2 + a3) 3 + (—%1 + ag + 3as + a4) zt+o (x4)

Or pour tout z € R, g (f(z)) = x et donc g (f(z)) =,rto (z*). Donc par unicité du développement

T—r
limité, on a

—a1:1 a1:—1
ar+ay =0 ar=—a; =1
<~
2a9 + a3 =10 az = —2a9 = —2
—% +ax+3az3+ays =0 a4:“2—1—a2—3a3:—%—1+6:%.
Conclusion,
9(y) =, v +y =20+ Syt +o(yY).
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17. Par la question précédente, on en déduit que la tangente de g en 0 a pour équation

‘VIL‘ eR, T(x) = —m.‘

De plus,
2
9W) +y ~ v >0

Or deux équivalents ont le méme signe au voisinage considéré donc

la courbe représentative de g est au-dessus de sa tangente au voisinage de 0. ‘

Cela est bien cohérent avec la question [8] car la tangente de g en 0 s’obtient & partir de celle de f par
la symétrie axiale d’axe y = x. Or la droite y = —x est bien son propre symétrique. De plus puisque
f est en-dessous de cette tangente, par symétrie par rapport & y = x, g se trouve bien au-dessus au
voisinage de 0.

Partie 6 : Méthode 2, un DL ¢a vous donne des ailes

18. (a) Puisque g(y) =, 1Y + azy* + asy® + asy* + o (y*), on a
Yy

) — (a1y + a2y® + asy® + asy* + 0 (y*)) (ary + a2y® + asy® + aay* + o (y*))

o afy? +aragy® +atasy’ +o (y?)
+a1a2y3 +a%y4 +o (y4)
+arasy* 4o (y*)
+o (y4
= a?y® + 2a1a0y° + (2a1a3 + a%) yt+o (y4) .

y—0

Conclusion,

g(y)2 = a%yz + 2a1a2y3 + (2a1a3 + a%) y4 +o (y4) :

y—0

(b) Si a1 # 0 (important!) alors g(y) o GV Par élévation a la puissance, g(y)* o ajy* et
g(y)? o aty* +o(y*). Si a1 =0, alors g(y) S0 (y) et donc g(y)* o 1y* 4 o (y*) reste vrai

dans ce cas. Conclusion,

9()* = aly*+o(y").

Yy—

19. Par continuité de g en 0, g(y) — g(0) = 0. Or par la question [5.| f(z) = —x+2?— % + o0 (z*). On
y—0 z—0
obtient donc que

4
—g(y) +9(y)* - g(g) +o(gy)").

f(g(w))

Or par les questions précédentes, on sait que

yj>0

a(y) et + asy? + asy® + agy* + o (y4)
9(v)* =, oly’ +2a1a2y” + (2005 + a3) y" + o (y")

g(y)* = afy*+o(yh).

y—0

déduit égal t 4 = 4). Do
On en déduit également que o(g(y) ) So o(y ) o,

4
a
fg(y)) yjo —a1y + (a% — a2) y? + (2a1a2 — as3) y® + <2a1a3 + a% — a4 — 21> vt +o (y4) .

/i3
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Or
. 4
Flaw) =y = y+oly).

Donc par unicité du développement limité,

—a] = 1 ay = -1

a? —az =0 ag =aji=1

=
2a1a2 — a3 = 0 asz = 2&10,2 = -2
4 4
2a1a3+ a3 —as— % =0 as =2aa3+ a3 — Y =4+1—-3 =1

Conclusion, on retrouve bien que

gly) = —y+y2—2y3+9i1+0(y4)
y—0 2 '

Partie 7 : Méthode 3, un DL, c’est un bonheur éternel

20. Parla questionon sait que g admet un développement limité d’ordre 3 en 0 : il existe (bg, b1, ba, b3) €

21.

R? tel que
g'(y) = bo+biy+ by +bsy® +o(y?).
y—0
Or g est une primitive de g sur J’, donc par le théoréme de primitivation des développements limités,

on a

B b1 9 b2 3 b3 4 4
g(y)y30b0y+§y +3Y Y +o(y").

Or on a g(y) =, 1Y + asy® + asy® + agy* + o (y4). Donc par unicité du développement limité,
Y—>

bo = a1 bo = a1

%1 = a o b1 = 2a2
%2 = das bz = 3a3
%‘ = a4 by = 4ay.

Conclusion,

J () o + 2a0y + 3aszy® + dasy® + o (v°) .

Dans la partie [3[ on a vu que ﬁ = —1 -2z —422 — 623+ o0 (x?’) Or on sait également que
T—

g(y) = ary+agy? +azy®+o (y3) — 0. Puis nous avions également calculé que
y—0 y—0

9(y)? V50 aty® + 2a1a2y® + (2a1a3 + a3) y* + o (y*) = aiy® + 2a1a29” + 0 (v°).

y—0

Par suite,

9(y)* = g9(y)g(y)? o (a1y + asy® + asy® + o (y°)) (aly? + 2a1a29” + 0 (3*)) o aty® + o (y%) .
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Ainsi,
1 2 3 3
— = —1-2(y) —49(y)* — 69(y)* + 0 (9(y)°)
fgly)) v=0
= —1-2ay —2a2y®> —2as3y® +o0 (y3)
y—0
—4a2y® —8ajazy® +o (y3)
—6a‘rfy3 +o0 (y3)
+o0 (yd)
- _1_ _ 2),.2 _ 3\ ,,3 3
o 1—-2a (2(12 + 4a1) Y (2a3 + 8ajas + 6a1) ¥y’ +o (y ) .
Conclusion,

1

m yio -1 —2a;1 — (2a2 + 4a%) y? — (2a3 + 8ajas + Ga?) v +o (yd) .

22. Par les deux questions précédentes, on a

9'(y) et 2a2y + 3azy® + dasy® + o (y°)

1
W) o —1—2a; — (2a2 + 4a%) y? — (2a3 + 8ajas + 6a‘;’) v+ o0 (y3) )

Or on sait que pour tout y € J', (et donc notamment au voisinage de 0) on a m = ¢'(y). Donc
par unicité du développement limité,
ap =—1 ap = —1
20,2 = —2@1 PN a2 = —a1 = 1
2
3ag = — (2az + 4a) agz—%:—%:—Q
3
4ay = — (2a3 + 8ajaz + 6a}) ay = _2a3+8“j1“2+6“1 = —AEb 18 _ 9
Rien a faire, ou trouve toujours les mémes coefficients :
9y
9W) =5, v+ v -2+ = +ol(y).

Probleme II - Ensembles et applications

Soit F un ensemble et A et B deux parties fixées de E. On pose
f + Z(E)— Z((A)xZ(B)
X—(ANnX,BnX).
1. On suppose que f est injective sur & (F).
(a) Posons X = AU B. Alors
f(AUB)=f(X)=(ANX,BNnX)=(ANn(AUB),BN(AUB))
Or AC AUBet BC AUB.Donc AN(AUB)=Aet BN (AU B) = B. Conclusion,

|f(AUB) = (4, B).|

Posons maintenant X = E. Alors
fIEY=f(X)=(ANX,BnX)=(ANE,BNE)=(A, B).
Comme A C E et B C F, on a aussi,

|/ (E)=(4,B).]

10/]12]
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(b) Nous avons établi dans la question précédente que
f(AUB) = (A, B) = [ (E).
Or la fonction f est injective. Donc, on en déduit que
2. On suppose maintenant que £ = AU B. Soit (X,Y) € 2 (E)? tel que f (X) = f (Y).

(a) Soit z € A. Montrons que z € X = x € Y. Supposons donc que z € X et montrons que z € Y.
Par hypothese, on a f (X) = f(Y). Autrement dit

ANX=ANnY

(ANX,BNX)=(ANY,BNY) &
BNnX=BnNY

On a supposé que x € Aetx € X. Doncx € ANX =ANY.Or ANY CY donc x € Y. Ceci
étant vrai pour x € X quelconque, on en conclut que

reX = zeY.

(b) Montrons que X C Y ie Vr € E, z € X = x €Y. Fixons z € E. Par hypotheése, E = AU B.
Donc z € Aoux € B.
Premier cas, supposons x € A. Par la question précédente, on a bien

reEX = €Y.

Deuxiéme cas, supposons z € B. Alors comme dans la question précédente, pour z € X, on a
reXNB.OrBNX=BNnY.Doncx e BNY CY et donc xz €Y. Ainsi, on a encore

reX = xeY.
Finalement dans tous les cas,onax € X = z €Y :

Ve € E, reX = zxey.

(¢) Montrons que f est injective. Autrement dit, on veut montrer que

V(X,Y)e Z(E)?, f(X)=f() =  X=Y

Conclusion,

Soit (X,Y) € 2 (E)? tel que f(X) = f(Y). Alors par la question précédente, on a X C Y. Par
symétrie des hypothéses sur X et Y, on peut montrer exactement de la méme fagon que Y C X.

Donc
X =Y.
Ainsi,
V(X,Y)e 2 (E)?, f(X) = f(Y) = X=Y
Conclusion,

’f est injective.‘

3. Par la question[T]on a
f injective = E=AUB.

Réciproquement, par la question [2]
E=AUB = f injective.

Conclusion,

‘f injective & E=AUB.

11/12
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4. (Facultative) Supposons dans un premier temps f surjective et montrons alors que AN B = 0.
Procédons par ’absurde et supposons que AN B # (. Autrement dit supposons qu’il existe e € AN B.
Posons A1 = A\ {e} et By = {e}. Puisque e € AN B C B, on en déduit que By € & (B) et par
définition de Ay, A; € & (A). Donc (A1,B1) € Z(A)N P (B). Or f est surjective donc il existe
X € Z(E) telle que f(X) = (A1, By) i.e. telle que

(ANX,BnX)=(A\{e}, {e}).

Comme BN X = {e}, on en déduit que e € BN X et en particulier e € X. Or par définition de e, on
ae€ A. Doncee ANX.Or ANX = A\ {e}. Donc e € A\ {e} ce qui est contradictoire. Donc si f
est surjective, alors AN B = ().

Réciproquement supposons ANB = () et montrons que f est surjective. Soit (41, B1) € & (A)x Z (B).
Montrons qu'il existe X € & (FE) tel que f (X) = (A1, By). Posons
X =AU B;.

Puisque A; C A, By C B et que A et B sont disjointes : AN B = (), on en déduit que A; et By sont
aussi disjoints, A; N By = (). Alors I'union est disjointe :

X =AU B;.

Montrons que ANX = A;. Soit r € ANX. Alorsx € X = A1 U By donc z € Ay ou x € By.

Montrons que x € Aj en procédant par ’absurde. Supposons que x € B; C B alors z € B. Or
x € ANX, donc z € A. Donc x € ANB = () ce qui est impossible. Donc = ¢ By. Donc nécessairement
r € Ay

Résumons, on a pris © € AN X et on a montré que x € A;. Ainsi,
ANX C Ay

Réciproquement, si x € A; C A, alors x € A. De plus, A1 C A1 UB; = X. Donc xz € A; C X implique
aussi x € X. Des lors, x € ANX. Dou A1 € AN X. On a donc montré que

ANX = Ay

Par symétrie des hypotheses, on montre de la méme maniere que By = BNX. Ainsi, pour X = A1LBy,
on a bien
f(X) = (A1, By).
Donc (A1, By) possede un antécédent par f.
Ceci étant vrai pour tout (A1, B;1) € & (A) x & (B), on conclut que f est surjective.

Finalement,

‘f surjective & AN B =1. ‘
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