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Correction du Devoir Maison 6
analyse asymptotique, ensembles et

applications

Du jeudi 22 janvier

Problème I - Analyse asymptotique
On considère la fonction

f : R → R
x 7→ ln

(
1 + x2) − x.

Partie 1 : Admirons les courbes heu la courbe de f

1. La fonction logarithme est définie et même dérivable sur R∗
+ mais pour tout x ∈ R, 1 + x2 ⩾ 1 > 0.

Ainsi,
f est déifnie et même dérivable sur R.

De plus,

∀x ∈ R, f ′(x) = 2x

1 + x2 − 1 = 2x − 1 − x2

1 + x2 = −x2 − 2x + 1
1 + x2 = −(x − 1)2

1 + x2 .

Conclusion,

∀x ∈ R, f ′(x) = −(x − 1)2

1 + x2 .

2. (a) Pour tout x > 0, on a

f(x) = ln
(
1 + x2) − x = −x + ln

(
x2) + ln

Å
1 + 1

x2

ã
= −x + 2 ln(x) + ln

Å
1 + 1

x2

ã
.

Or ln
(
1 + 1

x2

)
−→

x→+∞
0 donc

ln
Å

1 + 1
x2

ã
≪

x→+∞
2 ln(x) ≪

x→+∞
−x.

Conclusion,
f(x) ∼

x→+∞
−x.

(b) On a pour tout x > 0,

f(x) + x = 2 ln(x) + ln
Å

1 + 1
x2

ã
−→

x→+∞
+∞.

Donc la fonction f présente une branche asymptotique de direction y = −x mais ne possède
pas d’asymptote en +∞.

(c) On sait que ln (1 + u) =
u→0

u − u2

2 + o
(
u2). Posons u = 1

x2 −→
x→+∞

0. Ainsi,

ln
Å

1 + 1
x2

ã
=

x→+∞

1
x2 − 1

2x4 + o

Å 1
x4

ã
.

D’où

f(x) =
x→+∞

−x + 2 ln(x) + 1
x2 − 1

2x4 + o

Å 1
x4

ã
.
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3. Par la question 1. on a
∀x ∈ R, f ′(x) = −(x − 1)

1 + x2 .

Donc pour tout x ∈ R \ {1}, on a f ′(x) < 0. Donc la fonction f est strictement négative sur R sauf en
un seul point. On en déduit que la fonction f est strictement décroissante sur R. De plus, la fonction
f étant dérivable sur R elle est notamment continue sur R. Donc par le théorème de la bijection, on
en déduit que f définit une bijection de R dans J = f (R) et de plus,

J = f (R) =
ò

lim
x→+∞

f(x); lim
x→−∞

f(x)
ï

.

Or par la question 2.a f(x) ∼
x→+∞

−x donc

lim
x→+∞

f(x) = lim
x→+∞

−x = −∞.

De même, pour tout x < 0, on a

f(x) = −x + ln
(
x2) + ln

Å
1 + 1

x2

ã
= −x + 2 ln (|x|) + ln

Å
1 + 1

x2

ã
.

D’où,
f(x) ∼

x→+∞
−x.

Et donc
lim

x→−∞
f(x) = lim

x→−∞
−x = +∞.

Attention, bien que le résultat soit opposé, la fonction f n’est pas impaire pour autant, ni paire
d’ailleurs. Donc J = ]−∞; +∞[ = R. Conclusion,

f définit une bijection de R dans J = R.

On note g = f−1 sa fonction réciproque.

Partie 2 : Et-qui-va-lent..tement va sûrement

4. Soit n ∈ N. La fonction f est définie et même de classe C n sur R donc en 0. Donc d’après le théorème
de Taylor-Young, on en déduit que

f admet un développement limité à l’ordre n en 0.

5. Rappelons que ln (1 + u) =
u→0

u − u2

2 + o
(
u2). Posons cette fois u = x2 −→

x→0
0. Dès lors,

ln
(
1 + x2) =

x→0
x2 − x4

2 + o
(
x4) .

Conclusion,

f(x) =
x→0

−x + x2 − x4

2 + o
(
x4) .

6. Puisque f est C 4 en 0, on sait par la formule de Taylor-Young que

f(x) =
x→0

f(0) + f ′(0)x + f ′′(0)
2 x2 + f (3)(0)

6 x3 + f (4)(0)
24 x4 + o

(
x4) .

Donc par unicité du développement limité, à l’aide de la question précédente, on en déduit que

f (4)(0)
24 = −1

2 .

Conclusion,
f (4)(0) = −12.
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7. De même que précédemment, pour tout n ∈ N, n ⩾ 2, on a

ln
(
1 + x2) =

x→0

n∑
k=1

(−1)k+1 x2k

k
+ o

(
x2n

)
.

Donc
f(x) =

x→0
−x +

n∑
k=1

(−1)k+1 x2k

k
+ o

(
x2n

)
.

Notamment on remarque qu’à part −x, tous les termes d’ordre impair sont nuls. Or la fonction f
étant de classe C 2n en 0, par la formule de Taylor-Young, on a

f(x) =
x→0

2n∑
k=0

f (k)(0)
k! xk + o

(
x2n

)
.

Donc par unicité du développement limité,

∀k ∈∈ J1; n − 1K, (car n ⩾ 2) f (2k+1)(0)
(2k + 1)! = 0.

Ceci étant vrai pour tout n ⩾ 2, on conclut que,

∀k ∈ N∗, f (2k+1)(0) = 0.

8. On sait que
f(x) =

x→0
−x + x2 + o

(
x2) .

On en déduit donc f admet pour tangente en 0 la droite d’équation

y = −x.

De plus,
f(x) + x ∼

x→0
x2 ⩾ 0

Or deux équivalents ont même signe au voisinage du point considéré donc au voisinage de 0, f(x)+x ⩾
0 et donc

le graphe de f est au-dessus de sa tangente au voisinage de 0.

9. Je pressens un ordre 5... On sait par la question 7. que

f(x) =
x→0

−x + x2 − x4

2 + x6

3 + o
(
x6) =

x→0
−x + x2 − x4

2 + o
(
x5) .

De plus,

−x2 cos(x) =
x→0

−x2
Å

1 − x2

2 + o
(
x3)ã =

x→0
−x2 + x4

2 + o
(
x5) .

D’autre part,

2 sh(x) − tan(x) =
x→0

1
3

Å
2x + 2x3

6 + 2x5

120 + o
(
x5) − x − x3

3 − 2x5

15 + o
(
x5)ã

=
x→0

x + x5

60 − 2x5

15 + o
(
x5)

=
x→0

x + x5

60 − 8x5

60 + o
(
x5)

=
x→0

x − 7x5

60 + o
(
x5) .
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D’où,

h(x) =
x→0

f(x) − x2 cos(x) + 2 sh(x) − tan(x)

=
x→0

−x +x2 −x4

2 +o
(
x5)

−x2 +x4

2 +o
(
x5)

+x −7x5

60 +o
(
x5)

=
x→0

−7x5

60 + o
(
x5) .

Tiens oui c’était bien de l’ordre 5. Conclusion,

h(x) ∼
x→0

−7x5

60 .

Partie 3 : Une technique primaire mais primordiale, la primitivation

10. (a) Par la question 5., on a

f(x) =
x→0

−x + x2 − x4

2 + o
(
x4) .

De plus f est C 4 en 0 donc f ′ existe et f ′ est même C 3 en 0. Donc par le théorème de Taylor-
Young, il existe (a0, a1, a2, a3) ∈ R4 tel que

f ′(x) =
x→0

a0 + a1x + a2x2 + a3x3 + o
(
x3) .

Or f est une primitive de f sur R donc par le théorème de primitivation des développements
limités, on a

f(x) =
x→0

f(0) + a0x + a1
2 x2 + a2

3 x3 + a3
4 x4 + o

(
x4) .

Donc par unicité du développement limité :

f(0) = 0 OK
a0 = −1
a1
2 = 1
a2
3 = 0
a3
4 = −1

2

⇔


a0 = −1
a1 = 2
a2 = 0
a3 = −2

.

Conclusion,
f ′(x) =

x→0
−1 + 2x − 2x3 + o

(
x3) .

On vérifie que cela correspond bien à la dérivation du développement limité de f .
(b) Par la question précédente, au voisinage de 0, on a

1
f ′(x) =

x→0

1
−1 + 2x − 2x3 + o (x3) =

x→0
− 1

1 − 2x + 2x3 + o (x3)

On sait que 1
1+u = 1 − u + u2 − u3 + o

(
u3). Posons u(x) =

x→0
−2x + 2x3 + o

(
x3). Alors,

• u(x) −→
x→0

0.
• De plus,

u(x)2 =
x→0

(
−2x + 2x3 + o

(
x3)) (−2x + 2x3 + o

(
x3)) =

x→0
4x2 + o

(
x3) .
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• Puisque u(x) ∼
x→0

−2x, alors u(x)3 ∼
x→0

−8x3 et donc

u(x)3 =
x→0

−8x3 + o
(
x3) .

• Enfin o
(
u(x)3) =

x→0
o
(
x3).

Dès lors,

1
f ′(x)

=
x→0

− 1
1+u(x)

=
x→0

− (1 + 2x −2x3 +o
(
x3)

+4x2 +o
(
x3)

+8x3 +o
(
x3)

+o
(
x3))

=
x→0

−
(
1 + 2x + 4x2 + 6x3 + o

(
x3))

=
x→0

−1 − 2x − 4x2 − 6x3 + o
(
x3) .

Conclusion,
1

f ′(x) =
x→0

−1 − 2x − 4x2 − 6x3 + o
(
x3) .

11. Par la question 1., on a

∀x ∈ R, f ′(x) = −(x − 1)2

1 + x2 .

Donc
∀x ∈ R \ {1} ,

1
f ′(x) = − 1 + x2

(1 − x)2 .

Or, on a

1
(1 − x)2 = (1 − x)−2 =

x→0
1 + (−2) (−x) + (−2)(−3)

2 (−x)2 + (−2)(−3)(−4)
6 (−x)3 + o

(
x3)

=
x→0

1 + (−2) (−x) + (−2)(−3)
2 (−x)2 + (−2)(−3)(−4)

6 (−x)3 + o
(
x3)

=
x→0

1 + 2x + 3x2 + 4x3 + o
(
x3) .

Ainsi,

1
f ′(x)

=
x→0

−
(
1 + x2) (1 + 2x + 3x2 + 4x3 + o

(
x3))

=
x→0

−1 − 2x −3x2 − 4x3 + o
(
x3)

−x2 − 2x3 + o
(
x3)

=
x→0

−1 − 2x − 4x2 − 6x3 + o
(
x3) .

Oooh ! On retrouve le résultat de la question précédente :

1
f ′(x) =

x→0
−1 − 2x − 4x2 − 6x3 + o

(
x3) .
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Partie 4 : Et le DL fut

12. Par ce qui précède, on a

• la fonction f est strictement monotone (décroissante) sur R donc sur ]−∞; 1[ et sur ]1; +∞[,
• la fonction f est dérivable sur R et donc sur ]−∞; 1[ et sur ]1; +∞[,
• Pour tout x ∈ R,

f ′(x) = −(x − 1)2

1 + x2 .

Donc pour tout x ∈ ]−∞; 1[, f ′(x) ̸= 0 et de même pour tout x ∈ ]1; +∞[, f ′(x) ̸= 0.

Donc en appliquant le théorème de la dérivée de la fonction réciproque sur l’intervalle ]−∞; 1[ d’une
part et sur l’intervalle ]1; +∞[ d’autre part, on en déduit que g est dérivable sur f (]−∞; 1[) et sur
f (]1; +∞[). Or f(1) = ln(2) − 1 et par le théorème de la bijection,

f (]−∞; 1[) =
ò
f(1); lim

x→−∞
f(x)
ï

= ]ln(2) − 1; +∞[ et f (]1; +∞[) = ]−∞; ln(2) − 1[ .

D’où,
g est dérivable sur J ′ = R \ {ln(2) − 1}.

De plus,
∀y ∈ J ′, g′(y) = 1

f ′ (g(y)) .

Donc par la question 1.

∀y ∈ J ′, g′(y) = − 1 + g(y)2

(1 − g(y))2 .

13. On pose pour tout k ∈ N,
P(k) : « g ∈ C k

(
J ′,R

)
. »

Procédons par récurrence.
Initialisation. Si k = 0, alors par la question précédente, on sait que g est dérivable et donc continue
sur J ′. Donc g ∈ C 0 (J ′,R), donc P(0) est vraie.
Hérédité. Soit k ∈ N. Montrons que P(k) ⇒ P(k + 1). On suppose que P(k) est vraie et montrons
que P(k+1) l’est aussi. Par hypothèse de récurrence, g est C k sur J ′. De plus, puisque g est bijective,
si y ̸= ln(2) − 1 = f(1), alors g(y) ̸= 1. Donc pour tout y ∈ J ′, (1 − g(y))2 ̸= 0. Donc la fonction
y 7→ 1+g(y)2

(1−g(y))2 est C k sur J ′ comme somme et quotient de fonctions C k dont le dénominateur ne

s’annule pas sur J ′. Or pour tout y ∈ J ′, g′(y) = − 1+g(y)2

(1−g(y))2 . Donc g′ est C k sur J . Par suite, g est
C k+1 sur J ′. Donc P(k + 1) est vraie.
Conclusion, pour tout k ∈ N, P(k) est vraie i.e.

∀k ∈ N, g ∈ C k
(
J ′,R

)
.

14. Par la question précédente, g est C 4 sur J ′ donc notamment en 0 (car ln(2) − 1 ̸= 0) et donc g′ est
C 3 en 0. Donc par le théorème de Taylor-Young, on en déduit que

g, respectivement g′, admet un développement limité à l’ordre 4, respectivement 3, en 0.

On note dans toute la suite (a0, a1, a2, a3, a4) ∈ R5 les coefficients du développement limité de g en 0 :

g(y) =
y→0

a0 + a1y + a2y2 + a3y3 + a4y4 + o
(
y4) .

15. Puisque f(0) = 0 et que g = f−1, on en déduit que g(0) = 0. Conclusion,

g(0) = 0.
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Partie 5 : Méthode 1, un DL et la vie est plus belle

16. Par la question 5. on a

f(x) =
x→0

−x + x2 − x4

2 + o
(
x4) .

Donc

• f(x) −→
x→0

0.
• De plus,

f(x)2 =
x→0

Ä
−x + x2 − x4

2 + o
(
x4)ä Ä−x + x2 − x4

2 + o
(
x4)ä

=
x→0

x2 −x3 +o
(
x4)

−x3 + x4 +o
(
x4)

+o
(
x4)

=
x→0

x2 − 2x3 + x4 + o
(
x4) .

• Puis,

f(x)3 =
x→0

Ä
−x + x2 − x4

2 + o
(
x4)ä (x2 − 2x3 + x4 + o

(
x4))

=
x→0

−x3 +2x4 +o
(
x4)

+x4 +o
(
x4)

+o
(
x4)

=
x→0

−x3 + 3x4 + o
(
x4) .

• Comme f(x) ∼
x→0

−x, alors f(x)4 ∼
x→0

x4 et donc

f(x)4 =
x→0

x4 + o
(
x4) .

• Enfin, o
(
f(x)4) =

x→0
o
(
x4).

Forts de ces calculs, nous obtenons donc que

g (f(x)) =
x→0

a1f(x) + a2f(x)2 + a3f(x)3 + a4f(x)4 + o
(
f(x)4)

=
x→0

−a1x +a1x2 −a1
x4

2 +o
(
x4)

+a2x2 −2a2x3 +a2x4 +o
(
x4)

−a3x3 +3a3x4 +o
(
x4)

+a4x4 +o
(
x4)

+o
(
x4)

=
x→0

−a1x + (a1 + a2) x2 − (2a2 + a3) x3 +
(
−a1

2 + a2 + 3a3 + a4
)

x4 + o
(
x4)

Or pour tout x ∈ R, g (f(x)) = x et donc g (f(x)) =
x→0

x + o
(
x4). Donc par unicité du développement

limité, on a
−a1 = 1
a1 + a2 = 0
2a2 + a3 = 0
−a1

2 + a2 + 3a3 + a4 = 0

⇔


a1 = −1
a2 = −a1 = 1
a3 = −2a2 = −2
a4 = a1

2 − a2 − 3a3 = −1
2 − 1 + 6 = 9

2 .

Conclusion,

g(y) =
y→0

−y + y2 − 2y3 + 9
2y4 + o

(
y4) .
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17. Par la question précédente, on en déduit que la tangente de g en 0 a pour équation

∀x ∈ R, T (x) = −x.

De plus,
g(y) + y ∼

y→0
y2 > 0.

Or deux équivalents ont le même signe au voisinage considéré donc

la courbe représentative de g est au-dessus de sa tangente au voisinage de 0.

Cela est bien cohérent avec la question 8. car la tangente de g en 0 s’obtient à partir de celle de f par
la symétrie axiale d’axe y = x. Or la droite y = −x est bien son propre symétrique. De plus puisque
f est en-dessous de cette tangente, par symétrie par rapport à y = x, g se trouve bien au-dessus au
voisinage de 0.

Partie 6 : Méthode 2, un DL ça vous donne des ailes

18. (a) Puisque g(y) =
y→0

a1y + a2y2 + a3y3 + a4y4 + o
(
y4), on a

g(y)2 =
y→0

(
a1y + a2y2 + a3y3 + a4y4 + o

(
y4)) (a1y + a2y2 + a3y3 + a4y4 + o

(
y4))

=
y→0

a2
1y2 +a1a2y3 +a1a3y4 +o

(
y4)

+a1a2y3 +a2
2y4 +o

(
y4)

+a1a3y4 +o
(
y4)

+o
(
y4)

=
y→0

a2
1y2 + 2a1a2y3 +

(
2a1a3 + a2

2
)

y4 + o
(
y4) .

Conclusion,
g(y)2 =

y→0
a2

1y2 + 2a1a2y3 +
(
2a1a3 + a2

2
)

y4 + o
(
y4) .

(b) Si a1 ̸= 0 (important !) alors g(y) ∼
y→0

a1y. Par élévation à la puissance, g(y)4 ∼
y→0

a4
1y4 et

g(y)4 =
y→0

a4
1y4 + o

(
y4). Si a1 = 0, alors g(y) =

y→0
o (y) et donc g(y)4 =

y→0
a4

1y4 + o
(
y4) reste vrai

dans ce cas. Conclusion,
g(y)4 =

y→0
a4

1y4 + o
(
y4) .

19. Par continuité de g en 0, g(y) −→
y→0

g(0) = 0. Or par la question 5. f(x) =
x→0

−x + x2 − x4

2 + o
(
x4). On

obtient donc que

f (g(y)) =
y→0

−g(y) + g(y)2 − g(y)4

2 + o
(
g(y)4) .

Or par les questions précédentes, on sait que

g(y) =
y→0

a1y + a2y2 + a3y3 + a4y4 + o
(
y4)

g(y)2 =
y→0

a2
1y2 + 2a1a2y3 +

(
2a1a3 + a2

2
)

y4 + o
(
y4)

g(y)4 =
y→0

a4
1y4 + o

(
y4) .

On en déduit également que o
(
g(y)4) =

y→0
o
(
y4). D’où,

f (g(y)) =
y→0

−a1y +
(
a2

1 − a2
)

y2 + (2a1a2 − a3) y3 +
Å

2a1a3 + a2
2 − a4 − a4

1
2

ã
y4 + o

(
y4) .
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Or
f (g(y)) = y =

y→0
y + o

(
y4) .

Donc par unicité du développement limité,
−a1 = 1
a2

1 − a2 = 0
2a1a2 − a3 = 0
2a1a3 + a2

2 − a4 − a4
1

2 = 0

⇔


a1 = −1
a2 = a2

1 = 1
a3 = 2a1a2 = −2
a4 = 2a1a3 + a2

2 − a4
1

2 = 4 + 1 − 1
2 = 9

2

Conclusion, on retrouve bien que

g(y) =
y→0

−y + y2 − 2y3 + 9y4

2 + o
(
y4) .

Partie 7 : Méthode 3, un DL, c’est un bonheur éternel

20. Par la question 14. on sait que g admet un développement limité d’ordre 3 en 0 : il existe (b0, b1, b2, b3) ∈
R4 tel que

g′(y) =
y→0

b0 + b1y + b2y2 + b3y3 + o
(
y3) .

Or g est une primitive de g sur J ′, donc par le théorème de primitivation des développements limités,
on a

g(y) =
y→0

b0y + b1
2 y2 + b2

3 y3 + b3
4 y4 + o

(
y4) .

Or on a g(y) =
y→0

a1y + a2y2 + a3y3 + a4y4 + o
(
y4). Donc par unicité du développement limité,


b0 = a1
b1
2 = a2
b2
3 = a3
b3
4 = a4

⇔


b0 = a1

b1 = 2a2

b2 = 3a3

b3 = 4a4.

Conclusion,
g′(y) =

y→0
a1 + 2a2y + 3a3y2 + 4a4y3 + o

(
y3) .

21. Dans la partie 3 on a vu que 1
f ′(x) =

x→0
−1 − 2x − 4x2 − 6x3 + o

(
x3). Or on sait également que

g(y) =
y→0

a1y + a2y2 + a3y3 + o
(
y3) −→

y→0
0. Puis nous avions également calculé que

g(y)2 =
y→0

a2
1y2 + 2a1a2y3 +

(
2a1a3 + a2

2
)

y4 + o
(
y4) =

y→0
a2

1y2 + 2a1a2y3 + o
(
y3) .

Par suite,

g(y)3 = g(y)g(y)2 =
y→0

(
a1y + a2y2 + a3y3 + o

(
y3)) (a2

1y2 + 2a1a2y3 + o
(
y3)) =

y→0
a3

1y3 + o
(
y3) .

Enfin,
o
(
g(y)3) =

y→0
o
(
y3) .
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Ainsi,
1

f ′ (g(y))
=

y→0
−1 − 2g(y) − 4g(y)2 − 6g(y)3 + o

(
g(y)3)

=
y→0

−1 − 2a1y −2a2y2 −2a3y3 +o
(
y3)

−4a2
1y2 −8a1a2y3 +o

(
y3)

−6a3
1y3 +o

(
y3)

+o
(
y3)

=
y→0

−1 − 2a1 −
(
2a2 + 4a2

1
)

y2 −
(
2a3 + 8a1a2 + 6a3

1
)

y3 + o
(
y3) .

Conclusion,

1
f ′ (g(y)) =

y→0
−1 − 2a1 −

(
2a2 + 4a2

1
)

y2 −
(
2a3 + 8a1a2 + 6a3

1
)

y3 + o
(
y3) .

22. Par les deux questions précédentes, on a

g′(y) =
y→0

a1 + 2a2y + 3a3y2 + 4a4y3 + o
(
y3)

1
f ′ (g(y)) =

y→0
−1 − 2a1 −

(
2a2 + 4a2

1
)

y2 −
(
2a3 + 8a1a2 + 6a3

1
)

y3 + o
(
y3) .

Or on sait que pour tout y ∈ J ′, (et donc notamment au voisinage de 0) on a 1
f ′(g(y)) = g′(y). Donc

par unicité du développement limité,
a1 = −1
2a2 = −2a1

3a3 = −
(
2a2 + 4a2

1
)

4a4 = −
(
2a3 + 8a1a2 + 6a3

1
) ⇔


a1 = −1
a2 = −a1 = 1
a3 = −2a2+4a2

1
3 = −2+4

3 = −2
a4 = −2a3+8a1a2+6a3

1
4 = −−4−8−6

4 = 18
4 = 9

2 .

Rien à faire, ou trouve toujours les mêmes coefficients :

g(y) =
y→0

−y + y2 − 2y3 + 9y4

2 + o
(
y4) .

Problème II - Ensembles et applications
Soit E un ensemble et A et B deux parties fixées de E. On pose

f : P (E) → P (A) × P (B)
X 7→ (A ∩ X , B ∩ X) .

1. On suppose que f est injective sur P (E).

(a) Posons X = A ∪ B. Alors

f (A ∪ B) = f (X) = (A ∩ X , B ∩ X) = (A ∩ (A ∪ B) , B ∩ (A ∪ B))

Or A ⊂ A ∪ B et B ⊂ A ∪ B. Donc A ∩ (A ∪ B) = A et B ∩ (A ∪ B) = B. Conclusion,

f (A ∪ B) = (A , B) .

Posons maintenant X = E. Alors

f (E) = f (X) = (A ∩ X , B ∩ X) = (A ∩ E , B ∩ E) = (A , B) .

Comme A ⊂ E et B ⊂ E, on a aussi,

f (E) = (A , B) .
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(b) Nous avons établi dans la question précédente que

f (A ∪ B) = (A , B) = f (E) .

Or la fonction f est injective. Donc, on en déduit que

A ∪ B = E.

2. On suppose maintenant que E = A ∪ B. Soit (X, Y ) ∈ P (E)2 tel que f (X) = f (Y ).

(a) Soit x ∈ A. Montrons que x ∈ X ⇒ x ∈ Y . Supposons donc que x ∈ X et montrons que x ∈ Y .
Par hypothèse, on a f (X) = f (Y ). Autrement dit

(A ∩ X, B ∩ X) = (A ∩ Y, B ∩ Y ) ⇔
®

A ∩ X = A ∩ Y

B ∩ X = B ∩ Y
.

On a supposé que x ∈ A et x ∈ X. Donc x ∈ A ∩ X = A ∩ Y . Or A ∩ Y ⊂ Y donc x ∈ Y . Ceci
étant vrai pour x ∈ X quelconque, on en conclut que

x ∈ X ⇒ x ∈ Y.

(b) Montrons que X ⊂ Y i.e. ∀x ∈ E, x ∈ X ⇒ x ∈ Y . Fixons x ∈ E. Par hypothèse, E = A ∪ B.
Donc x ∈ A ou x ∈ B.
Premier cas, supposons x ∈ A. Par la question précédente, on a bien

x ∈ X ⇒ x ∈ Y.

Deuxième cas, supposons x ∈ B. Alors comme dans la question précédente, pour x ∈ X, on a
x ∈ X ∩ B. Or B ∩ X = B ∩ Y . Donc x ∈ B ∩ Y ⊂ Y et donc x ∈ Y . Ainsi, on a encore

x ∈ X ⇒ x ∈ Y.

Finalement dans tous les cas, on a x ∈ X ⇒ x ∈ Y :

∀x ∈ E, x ∈ X ⇒ x ∈ Y.

Conclusion,
X ⊂ Y.

(c) Montrons que f est injective. Autrement dit, on veut montrer que

∀ (X, Y ) ∈ P (E)2 , f(X) = f(Y ) ⇒ X = Y.

Soit (X, Y ) ∈ P (E)2 tel que f(X) = f(Y ). Alors par la question précédente, on a X ⊂ Y . Par
symétrie des hypothèses sur X et Y , on peut montrer exactement de la même façon que Y ⊂ X.
Donc

X = Y.

Ainsi,
∀ (X, Y ) ∈ P (E)2 , f(X) = f(Y ) ⇒ X = Y.

Conclusion,
f est injective.

3. Par la question 1. on a
f injective ⇒ E = A ∪ B.

Réciproquement, par la question 2.

E = A ∪ B ⇒ f injective.

Conclusion,
f injective ⇔ E = A ∪ B.

11/12



Mathématiques PTSI, DM6 Cor 2025-2026

4. (Facultative) Supposons dans un premier temps f surjective et montrons alors que A ∩ B = ∅.
Procédons par l’absurde et supposons que A∩B ̸= ∅. Autrement dit supposons qu’il existe e ∈ A∩B.
Posons A1 = A \ {e} et B1 = {e}. Puisque e ∈ A ∩ B ⊂ B, on en déduit que B1 ∈ P (B) et par
définition de A1, A1 ∈ P (A). Donc (A1, B1) ∈ P (A) ∩ P (B). Or f est surjective donc il existe
X ∈ P (E) telle que f(X) = (A1, B1) i.e. telle que

(A ∩ X , B ∩ X) = (A \ {e} , {e}) .

Comme B ∩ X = {e}, on en déduit que e ∈ B ∩ X et en particulier e ∈ X. Or par définition de e, on
a e ∈ A. Donc e ∈ A ∩ X. Or A ∩ X = A \ {e}. Donc e ∈ A \ {e} ce qui est contradictoire. Donc si f
est surjective, alors A ∩ B = ∅.
Réciproquement supposons A∩B = ∅ et montrons que f est surjective. Soit (A1, B1) ∈ P (A)×P (B).
Montrons qu’il existe X ∈ P (E) tel que f (X) = (A1, B1). Posons

X = A1 ∪ B1.

Puisque A1 ⊂ A, B1 ⊂ B et que A et B sont disjointes : A ∩ B = ∅, on en déduit que A1 et B1 sont
aussi disjoints, A1 ∩ B1 = ∅. Alors l’union est disjointe :

X = A1 ⊔ B1.

Montrons que A ∩ X = A1. Soit x ∈ A ∩ X. Alors x ∈ X = A1 ⊔ B1 donc x ∈ A1 ou x ∈ B1.
Montrons que x ∈ A1 en procédant par l’absurde. Supposons que x ∈ B1 ⊂ B alors x ∈ B. Or
x ∈ A∩X, donc x ∈ A. Donc x ∈ A∩B = ∅ ce qui est impossible. Donc x /∈ B1. Donc nécessairement
x ∈ A1.
Résumons, on a pris x ∈ A ∩ X et on a montré que x ∈ A1. Ainsi,

A ∩ X ⊂ A1.

Réciproquement, si x ∈ A1 ⊂ A, alors x ∈ A. De plus, A1 ⊂ A1 ⊔B1 = X. Donc x ∈ A1 ⊂ X implique
aussi x ∈ X. Dès lors, x ∈ A ∩ X. D’où A1 ⊂ A ∩ X. On a donc montré que

A ∩ X = A1.

Par symétrie des hypothèses, on montre de la même manière que B1 = B∩X. Ainsi, pour X = A1⊔B1,
on a bien

f (X) = (A1 , B1) .

Donc (A1, B1) possède un antécédent par f .
Ceci étant vrai pour tout (A1, B1) ∈ P (A) × P (B), on conclut que f est surjective.
Finalement,

f surjective ⇔ A ∩ B = ∅.

12/12


