
Mathématiques PTSI, DM7 2025-2026

Devoir Maison 7
continuité-dérivabilité, polynômes, espaces

vectoriels

A faire pour le mardi 24 février

Problème I - Continuité, dérivabilité

Partie 1 : Le taux de τ détonne

Soient (a, b) ∈ R2, a < b et g : [a; b] → R une fonction continue sur [a; b] et deux fois dérivable sur ]a; b[. On
suppose que pour tout x ∈ ]a; b[, g′′(x) ⩾ 0 et on note

∀x ∈ ]a; b[ , τ(x) = g(x) − g(a)
x − a

.

1. Justifier que τ est C 1 sur ]a; b[ et calculer sa dérivée.

2. Soit x ∈ ]a; b[. Montrer qu’il existe cx ∈ ]a; x[ tel que τ ′(x) = g′(x)−g′(cx)
x−a .

3. Conclure que τ est croissante sur ]a; b[.

Partie 2 : A appliquer deux fois par jour

Soit

f :
]0; 1[ → R

x 7→ arcsin(x2)
x

4. A l’aide de la partie précédente démontrer que f est croissante sur ]0; 1[.

5. Calculer la dérivée de f sur ]0; 1[.

6. En déduire que pour tout t ∈ ]0; 1[, arcsin(t) ⩽ 2t√
1−t2 .

7. Montrer que pour tout x ∈ ]0; 1[, f ′(x) ⩽ 2√
1−x4 .

8. Montrer que f est 4√
3 -lipschitzienne sur

ó
0; 1√

2

î
.

Partie 3 : Recollons les morceaux

On considère

φ :

[−1; 1] → R

x 7→


arcsin(x2)

x si x ∈ ]0; 1]
0 si x = 0
x si x ∈ [−1; 0[ .

9. Justifier que φ est continue sur [−1; 1].

10. Montrer que φ est C 1 sur ]−1; 1[.

11. (a) Calculer le développement limité à l’ordre 3 en 0 de x 7→ arcsin(x).
(b) Montrer que φ n’est pas C 5 en 0.

1/4



Mathématiques PTSI, DM7 2025-2026

Problème II - Polynômes

Partie 1 : Trouver la différence...

On appelle cotangente, notée cotan la fonction définie lorsque c’est possible par cotan(x) = cos(x)
sin(x) .

1. Déterminer le domaine de définition de cotan.

2. Justifier que les fonctions cotan et 1
tan ne sont pas égales partout.

3. Montrer que cotan définit une bijection sur ]0; π[ dans un ensemble que l’on précisera et tracer l’allure
de son graphe sur ]0; π[.

L’objectif de ce problème est de calculer lim
n→+∞

n∑
k=1

1
k2 en utilisant un résultat obtenu grâce à des polynômes.

Partie 2 : Une série limitée

On pose pour tout n ∈ N∗, Sn =
n∑

k=1

1
k2 et Tn = Sn + 1

n .

4. Montrer que la suite (Sn)n∈N∗ est strictement croissante.

5. Montrer que la suite (Tn)n∈N∗ est strictement décroissante.

6. Montrer que les suites (Sn)n∈N∗ et (Tn)n∈N∗ convergent.

Partie 3 : Il faut prendre le problème par la racine

Soit n ∈ N. On cherche à déterminer tous les polynômes Rn ∈ C[X] solutions de l’équation

(En) (X − 1) R′
n = nRn.

On note Sn l’ensemble des solutions de (En) dans C[X].

7. Montrer que Sn est un sous-espace vectoriel de C[X].

8. Préciser S0.

On fixe désormais n ∈ N∗. Soit Rn ∈ Sn. On suppose Rn non constant.

9. Quel théorème garantit l’existence d’une racine a ∈ C de Rn ?
On fixe a ∈ C une racine de Rn. On note p ∈ N∗ sa multiplicité.

10. Montrer que
nR(p−1)

n = (X − 1) R(p)
n + (p − 1) R(p−1)

n .

11. En déduire que a = 1 puis la factorisation de Rn dans C en fonction de p et d’un coefficient λ ∈ C∗.

12. Montrer que p = n.

13. En conclure que Sn = Vect ((X − 1)n). On pensera bien à justifier l’inclusion réciproque.
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Partie 4 : Découper Qn en petits morceaux pour mieux l’apprécier

On fixe n ∈ N, n ⩾ 2 et pour tout k ∈ J1; n − 1K, on note ωk = cotan
(

kπ
n

)
.

14. Soit k ∈ J1; n − 1K. Déterminer une relation entre ωn−k et ωk.

On pose Rn = (X − 1)n et Qn = Rn (X + 2) − Rn(X) = (X + 1)n − (X − 1)n.

15. Préciser Q2, Q3 et Q4.

16. Montrer que Qn est de même parité que n + 1.

17. A l’aide de la formule du binôme de Newton, déterminer le degré et le coefficient dominant de Qn.

18. Soit z ∈ C. Montrer que

(z + 1)n − (z − 1)n = 0 ⇔ z ∈ {−i ωk | k ∈ J1; n − 1K} .

19. A l’aide de la question 3. des préliminaires montrer que Qn possède au moins n − 1 racines distinctes.

20. Préciser la factorisation de Qn dans C[X].

21. Soit m ∈ N∗. En déduire la factorisation de Q2m+1 dans R[X].

Partie 5 : Pn n’est qu’un déguisement de Qn

On considère toujours n ∈ N, n ⩾ 2. On pose Pn =
n∑

k=0

Ç
2n + 1

2k

å
Xk.

22. Préciser P2 et P3.

23. (a) Soit t ∈ C. Simplifier A =
n∑

k=0

Ç
2n + 1

2k

å
X2kt2n−2k+1 +

n∑
k=0

Ç
2n + 1
2k + 1

å
X2k+1t2n−2k.

(b) En déduire que
Q2n+1(X) = 2Pn

(
X2) .

24. En déduire que pour tout k ∈ J1; nK, − cotan2
Ä

2kπ
2n+1

ä
sont des racines de Pn et qu’il n’y en a pas

d’autre.

25. Rappeler les deux relations racines-coefficients pour un polynôme scindé quelconque.

26. En déduire que
n∑

k=1
cotan2

Å
kπ

2n + 1

ã
= n (2n − 1)

3 .

Partie 6 : Conséquence constructive, conclusion convaincante et même consécration
complète

27. Montrer que pour tout x ∈
]
0; π

2
[
, sin(x) ⩽ x ⩽ tan(x).

28. En déduire que pour tout x ∈
]
0; π

2
[
, cotan2(x) ⩽ 1

x2 ⩽ 1 + cotan2(x).

29. Soit k ∈ J1; nK. En appliquant l’inégalité précédente à kπ
2n+1 , en déduire un encadrement de 1

k2 .

30. En déduire un encadrement puis un équivalent de
n∑

k=1

1
k2 .

31. Conclure en précisant lim
n→+∞

n∑
k=1

1
k2 .
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Problème III
Espaces vectoriels

Pour E un sous-espace vectoriel de R[X], on pose F = {P ∈ E | P (0) = P (1) = 0R }.

Partie 1 : La base, c’est s’adapter.

On suppose dans cette partie que E = R4[X] et on pose B =
(
1, X, X (X − 1) , X2 (X − 1) , X3 (X − 1)

)
.

1. Rappeler sans démonstration la base canonique de E.

2. Montrer que F est un sous-espace vectoriel de E.

3. Montrer que B est génératrice de E.

4. Montrer que B est une base de E.

5. Montrer que BF =
(
X (X − 1) , X2 (X − 1) , X3 (X − 1)

)
est une base de F .

6. En déduire que F et R1[X] sont supplémentaires dans E.

Partie 2 : La division unifie le tout !

On suppose dans cette partie que E = R[X] et on admet que F est un sous-espace vectoriel de E.

7. Montrer que F et R1[X] sont en somme directe.

8. Soit P ∈ E. Déterminer le reste de la division euclidienne de P par X (X − 1) en fonction de P (0) et
P (1).

9. En déduire que F et R1[X] sont supplémentaires dans E.
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