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Corrigé du Devoir Surveillé 5
Analyse asymptotique, ensembles et

applications, continuité et dérivabilité

Problème I - Analyse asymptotique

Exercice A
1. On sait que sin(x) =

x→0
x − x3

6 + o
(
x3). De plus eu =

u→0
1 + u + u2

2 + u3

6 + o
(
u3). Posons u(x) =

x→0
x− x3

6 + o
(
x3). On a alors les points suivants :

• u(x) −→
x→0

0.

• De plus,

u(x)2 =
x→0

Å
x− x3

6 + o
(
x3)ãÅx− x3

6 + o
(
x3)ã

=
x→0

x2 + o
(
x3) .

• Puis, u(x) ∼
x→0

x donc u(x)3 ∼
x→0

x3 i.e. u(x) =
x→0

x3 + o
(
x3).

• Enfin,
o
(
u(x)3) =

x→0
o
(
x3 + o

(
x3)) =

x→0
o
(
x3) .

Ainsi,

esin(x) =
x→0

1 + u+ u2

2 + u3

6 + o
(
u3)

=
x→0

1 + x −x3

6 +o
(
x3)

+x2

2 +o
(
x3)

+x3

6 +o
(
x3)

+o
(
x3)

=
x→0

1 + x +x2

2 +o
(
x3) .

De plus,

√
1 + 2x =

x→0
1 + 1

2 (2x) + (1/2)(−1/2)
2 (2x)2 + (1/2)(−1/2)(−3/2)

6 (2x)3 + o
Ä
(2x)3

ä
=

x→0
1 + x− 1

84x2 + 1
168x3 + o

(
x3)

=
x→0

1 + x− x2

2 + x3

2 + o
(
x3) .

Par différence,

h(x) = esin(x) −
√

1 + 2x =
x→0

1 + x+ x2

2 + o
(
x3)−

Å
1 + x− x2

2 + x3

2 + o
(
x3)ã =

x→0
x2 − x3

2 + o
(
x3) .

Conclusion,

h(x) =
x→0

x2 − x3

2 + o
(
x3) .

1/21



Mathématiques PTSI, DS5 Cor Vendredi 30 Janvier 2026

D’autre part, cos(x) =
x→0

1 − x2

2 + o
(
x3). Donc

1 − cos(x) =
x→0

x2

2 + o
(
x3) .

Donc

f(x) = h(x)
1 − cos(x) =

x→0

x2 − x3

2 + o
(
x3)

x2

2 + o (x3)
=

x→0

2 − x+ o (x)
1 + o (x) .

Posons v(x) = o (x). Alors v(x) −→
x→0

0 et o (v(x))) =
x→0

o (x). Or 1
1+v =

v→0
1 − v + o(v). Donc

1
1 + o(x) =

x→0
1 − o(x) + o(x) =

x→0
1 + o(x).

Ainsi,
f(x) =

x→0
(2 − x+ o (x)) (1 + o (x)) =

x→0
2 − x+ o (x) .

Conclusion,
f(x) =

x→0
2 − x+ o (x) .

2. Soit g : x 7→
√
x2 + x4 tan

( 1
x

)
+ ln

(
4 + arctan

( 1
x

)
+ ln

(
1 + 1

x

))
. On note que pour tout x > 2

π , on a
0 < 1

x <
π
2 donc tan

( 1
x

)
existe et 1 + 1

x > 1 donc 4 + arctan
( 1

x

)
+ ln

(
1 + 1

x

)
> 4 > 0 et x2 + x4 > 0

donc g est bien définie sur
] 2

π ; +∞
[
. Pour tout x > 2

π , posons h = 1
x . On a

g(x) =
…

1
h2 + 1

h4 tan (h) + ln (4 + arctan (h) + ln (1 + h))

=
√

1 + h2

h2 tan (h) + ln (4 + arctan (h) + ln (1 + h)) car h2 > 0.

Or quand h → 0, on a √
1 + h2 =

h→0
1 + h2

2 + o
(
h2)

tan(h) =
h→0

h+ h3

3 + o
(
h2)

arctan(h) =
h→0

h+ o (h)

ln (1 + h) =
h→0

h+ o (h)

Donc d’une part, …
1
h2 + 1

h4 tan (h) =
√

1 + h2

h2 tan (h)

=
h→0

1
h2

Å
1 + h2

2 + o
(
h2)ãÅh+ h3

3 + o
(
h2)ã

=
h→0

1
h2 (h +h3

3 +o
(
h2)

+h3

2 +o
(
h3)

+o
(
h3))

=
h→0

1
h2 (h +5h3

6 +o
(
h3))

=
h→0

1
h

+ 5h
6 + o (h) .
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D’autre part,

ln (4 + arctan (h) + ln (1 + h)) =
h→0

ln (4 + h+ o (h) + h+ o (h))

=
h→0

ln (4 + 2h+ o (h))

=
h→0

ln (4) + ln
Å

1 + h

2 + o (h)
ã
.

Posons u(h) =
h→0

h
2 + o (h). Alors,

• u(h) −→
h→0

0

• o (u(h)) =
h→0

o
(

h
2 + o (h)

)
=

h→0
o (h).

Or ln (1 + u) =
u→0

u+ o (u). Donc

ln (4 + arctan (h) + ln (1 + h)) =
h→0

ln (4) + h

2 + o (h) + o (h) =
h→0

ln (4) + h

2 + o (h) .

Ainsi,

g(x) =
h→0

1
h

+ 5h
6 + o (h) + ln (4) + h

2 + o (h)

=
h→0

1
h

+ ln(4) + 8h
6 + o (h) .

Finalement,
g(x) =

x→0
x+ ln(4) + 4

3x + o

Å1
x

ã
.

Donc la courbe représentative de g admet une asymptote en +∞ d’équation

y = x+ ln(4).

De plus, on a g(x) − (x+ ln(4)) ∼
x→0

4
3x et pour tout x > 0, 4

3x > 0. Or deux équivalents ont même
signe au voisinage du point considéré. Donc pour x assez grand, g(x) − (x+ ln(4)) > 0 et donc la
courbe représentative de g est

au-dessus de son asymptote au voisinage de +∞.

Problème B

Partie 1 : Construction de f

Pour tout x ∈ R∗, on pose
f0(x) = ex −1

x

3. Soit n ∈ N. On sait que

ex =
x→0

n+1∑
k=0

xk

k! + o
(
xn+1) .

Donc

ex −1 =
x→0

n+1∑
k=1

xk

k! + o
(
xn+1) .
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Enfin,

f0(x) =
x→0

n+1∑
k=1

xk−1

k! + o (xn)

Posons k̃ = k − 1. Si k = 1, k̃ = 0 et si k = n+ 1, alors k̃ = n. D’où

f0(x) =
x→0

n∑
k̃=0

xk̃(
k̃ + 1

)
!

+ o (xn) .

Conclusion,

f0(x) =
x→0

n∑
k=0

xk

(k + 1)! + o (xn) .

4. Pour n = 3, on a

f0(x) =
x→0

1
1! + x

2! + x2

3! + x3

4! + o
(
x3) .

Conclusion,

f0(x) =
x→0

1 + x

2 + x2

6 + x3

24 + o
(
x3) .

5. Par la question précédente,

f0(x) =
x→0

x0

1! + o (1) =
x→0

1 + o(1).

Donc lim
x→0
x ̸=0

f(x) = 1 et

f0 est bien prolongeable par continuité en 0

en posant pour tout x ∈ R∗, f(x) = f0(x) et f(0) = 1 .

6. Par la question 3. on a aussi

f(x) =
x→0

xk

(k + 1)! + o (xn) .

En particulier f admet un développement limité à l’ordre 1 en 0. Donc

f est dérivable en 0.

Cependant rien ne nous garantit a priori si f est C 1 ou C n ou non .

7. Pour tout x ∈ R∗, par factorisation par l’angle moitié,

f(x) = f0(x) = ex −1
x

= e
x
2

e x
2 − e− x

2

x
= e

x
2

2 sh
(

x
2
)

x
.

Conclusion, en prenant a = b = 1/2 , on a bien

∀x ∈ R∗, f(x) =
2 sh

(
x
2
)

e x
2

x
.
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8. On sait que

e
x
2 =

x→0
1 + x

2 +
x2

4
2 +

x3

8
6 + o

(
x3)

=
x→0

1 + x

2 + x2

8 + x3

48 + o
(
x3) .

D’autre part,

sh
(x

2

)
=

x→0

x

2 +
x3

8
6 + o

(
x4) =

x→0

x

2 + x3

48 + o
(
x4) .

Par suite,

f(x) =
2 sh

(
x
2
)

e x
2

x

=
x→0

2
x

Å
x

2 + x3

48 + o
(
x4)ãÅ1 + x

2 + x2

8 + x3

48 + o
(
x3)ã

=
x→0

Å
1 + x2

24 + o
(
x3)ãÅ1 + x

2 + x2

8 + x3

48 + o
(
x3)ã

=
x→0

1 + x
2 +x2

8 +x3

48 +o
(
x3)

+x2

24 +x3

48 +o
(
x3)

+o
(
x3)

=
x→0

1 + x
2 +4x2

24 +2x3

48 +o
(
x3)

=
x→0

1 + x

2 + x2

6 + x3

24 + o
(
x3) .

Conclusion, on retrouve bien le résultat de la question 4.

f(x) =
x→0

1 + x

2 + x2

6 + x3

24 + o
(
x3) .

Partie 2 : Construction de φ

On donne

f :
R → R

x 7→
® ex −1

x si x ̸= 0
1 si x = 0.

On admet que f est continue sur R et on donne

f(x) =
x→0

1 + x

2 + x2

6 + x3

24 + o
(
x3) .

Pour tout x ∈ R, on pose
F (x) =

∫ x

0
f(t) dt.

On définit également pour tout x ∈ ]0; +∞[,

φ0(x) =
∫ 2x

x

et

t
dt.

9. Soit x ∈ ]0; +∞[. Alors [x; 2x] ⊂ R∗
+. De plus t 7→ et

t est continue sur R∗
+ donc sur [x; 2x]. Donc

φ0(x) =
∫ 2x

x

et

t
dt existe.

Ceci étant vrai pour tout x ∈ ]0; +∞[, on en conclut que

φ0 est bien définie sur ]0; +∞[ .
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10. Puisque la fonction f est continue sur R et 0 ∈ R,

par le théorème fondamental de l’analyse,

F existe, est bien définie sur R et est une primitive de f de R. Or f est continue donc

F est C 1 sur R et F ′ = f .

11. Puisque f(x) =
x→0

1 + x
2 + x2

6 + x3

24 + o
(
x3), par le théorème de primitivation du développement limité,

F (x) =
x→0

F (0) + x+ x2

4 + x3

18 + x4

96 + o
(
x4) .

Or F (0) =
∫ 0

0 f(t) dt =
∫ 0

0 f(t) dt = 0. Conclusion,

F (x) =
x→0

x+ x2

4 + x3

18 + x4

96 + o
(
x4) .

12. Soit x ∈ ]0; +∞[. On a les égalités dans R suivantes :

φ0(x) =
∫ 2x

x

et

t
dt

=
∫ 2x

x

et −1
t

+ 1
t

dt

=
∫ 2x

x

et −1
t

dt+
∫ 2x

x

1
t

dt par linéarité de l’intégrale

=
∫ 0

x

et −1
t

dt+
∫ 2x

0

et −1
t

dt+ [ln (|t|)]t=2x
t=x par la relation de Chasles

= −
∫ x

0

et −1
t

dt+ F (2x) + ln (2x) − ln(x) car x > 0

= −F (x) + F (2x) + ln
Å2x
x

ã
= F (2x) − F (x) + ln(2).

Conclusion,
∀x ∈ ]0; +∞[ , φ0(x) = F (2x) − F (x) + ln(2).

13. Par la 11.

F (x) =
x→0

x+ x2

4 + x3

18 + x4

96 + o
(
x4)

F (2x) =
x→0

2x+ 4x2

4 + 8x3

18 + 24x4

96 + o
(
x4) .

Donc par la question précédente,

φ0(x) =
x→0

x+ 3x2

4 + 7x3

18 + 15x4

96 + o
(
x4) + ln(2).

Conclusion,

φ0(x) =
x→0

ln(2) + x+ 3x2

4 + 7x3

18 + 15x4

96 + o
(
x4) .
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14. Notamment, φ0(x) =
x→0

ln(2) + o (1). Donc lim
x→0
x>0

φ0(x) = ln(2). Ainsi,

φ0 est prolongeable par continuité en 0

en posant

φ :
R+ → R

x 7→
®
φ0(x) si x ̸= 0
ln(2) si x = 0.

Partie 3 : Etude de φ

15. Par la question 13. on a

φ(x) =
x→0

ln(2) + x+ 3x2

4 + o
(
x2) .

Donc le graphe de φ admet une tangente en 0 d’équation

y = ln(2) + x.

De plus,

φ(x) − (ln(2) + x) ∼
x→0

3x2

4
et pour tout x ∈ R, 3x2

4 ⩾ 0. Or deux équivalents ont même signe au voisinage considéré. Donc au
voisinage de 0, φ(x) − (ln(2) + x) ⩾ 0 et

le graphe de φ est au-dessus de sa tangente au voisinage de 0.

16. Par les questions précédentes,

∀x ∈ ]0; +∞[ , φ(x) = φ0(x) = F (2x) − F (x) + ln(2).

Or F est C 1 sur R. Donc
φ est C 1 sur ]0; +∞[.

De plus, pour tout x ∈ ]0; ; +∞[,

φ′(x) = 2F ′ (2x) − F ′(x)
= 2f (2x) − f(x) par la question 10.

= 2e2x −1
2x − ex −1

x

= e2x −1 − ex +1
x

= e2x − ex

x
.

Conclusion,

∀x ∈ ]0; +∞[ , φ′(x) = e2x − ex

x
.
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17. Posons x = 1 + h i.e. h = x− 1. Quand x → 1, on a h → 0. Par la question précédente,

φ′(x) = e2x − ex

x

= e2+2h − e1+h

1 + h

=
h→0

Ä
e2 e2h − e eh

ä (
1 − h+ h2 − h3 + o

(
h3))

=
h→0

Å
e2
Å

1 + 2h+ 4h2

2 + 8h3

6 + o
(
h3)ã− e

Å
1 + h+ h2

2 + h3

6 + o
(
h3)ãã

×
(
1 − h+ h2 − h3 + o

(
h3))

=
h→0

Å
e2 − e +

(
2 e2 − e

)
h+ 4 e2 − e

2 h2 + 8 e2 − e
6 h3 + o

(
h3)ã (1 − h+ h2 − h3 + o

(
h3))

=
h→0

e2 − e +
(
2 e2 − e

)
h +4 e2 − e

2 h2 +8 e2 − e
6 h3 +o

(
h3)

−
(
e2 − e

)
h −

(
2 e2 − e

)
h2 −4 e2 − e

2 h3 +o
(
h3)

+
(
e2 − e

)
h2 +

(
2 e2 − e

)
h3 +o

(
h3)

−
(
e2 − e

)
h3 +o

(
h3)

+o
(
h3)

=
h→0

e2 − e + e2 h +
(
e2 − e

2
)
h2 + e2 + e

3 h3 +o
(
h3) .

Conclusion,

φ′(x) =
x→1

e2 − e +2 e2 (x− 1) +
(

e2 − e
2

)
(x− 1)2 + e2 + e

3 (x− 1)3 + o
Ä
(x− 1)3

ä
.

18. Par la question précédente, φ′ admet un développement limité à l’ordre 1 en 1 donné par

φ′(x) =
x→1

e2 − e +2 e2 (x− 1) + o (x− 1) .

Or φ est une primitive de φ sur ]0; +∞[ (voisinage de 1). Donc par le théorème de primitivation du
développement limité :

φ(x) =
x→1

φ(1) +
(
e2 − e

)
(x− 1) + e2 (x− 1)2 + o

Ä
(x− 1)2

ä
.

On en déduit que le graphe de φ admet une tangente en 1 d’équation

y = φ(1) +
(
e2 − e

)
(x− 1) .

De plus,
φ(x) − φ(1) +

(
e2 − e

)
(x− 1) ∼

x→1
e2 (x− 1)2 .

et pour tout x ∈ R, e2 (x− 1)2 ⩾ 0. Or deux équivalents ont même signe au voisinage du point
considéré. Donc le graphe de φ est au voisinage de 1,

au dessus de sa tangente.

19. Soit x > 0 et t ∈ [x; 2x]. Par croissance de l’intégrale, et ⩾ ex. D’autre part 0 < t ⩽ 2x donc par
décroissance de la fonction inverse sur ]0; +∞[, 1

t ⩾ 1
2x . Les termes étant positifs, par produit,

∀x ∈ ]0; +∞[ , ∀t ∈ [x; 2x] , et

t
⩾

ex

2x.
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20. Soit x ∈ ]0; +∞[. Alors 2x ⩾ x (important !). Donc par la question précédente et la croissance de
l’intégrale, on a∫ 2x

x

et

t
dt ⩾

∫ 2x

x

ex

2x dt ⇔ φ(x) = ex

2x

∫ 2x

x
1 dt = ex

2x × (2x− x) = ex

2 .

Conclusion,

∀x ∈ ]0; +∞[ , φ(x) ⩾ ex

2 .

21. On sait que lim
x→+∞

ex

2 = +∞. Donc par la question précédente et le théorème de minoration,

lim
x→+∞

φ(x) = +∞.

De plus, toujours par la question précédente, pour tout x > 0, φ(x)
x ⩾ ex

2x . Or par croissance comparée,

lim
x→+∞

ex

2x = +∞. Par le théorème de minoration,

lim
x→+∞

φ(x)
x

= +∞.

Conclusion,
le graphe de φ présente une branche parabolique verticale en +∞.

22. On sait que φ est dérivable sur ]0; +∞[ et ∀x ∈ ]0; +∞[, φ′(x) = e2x − ex

x . La fonction exponentielle
étant strictement croissante sur R∗

+, x < 2x ⇒ ex < e2x. Donc

∀x ∈ ]0; +∞[ , φ′(x) > 0.

Donc la fonction φ est strictement croissante sur ]0; +∞[. Or φ est continue en 0. Donc φ est stricte-
ment croissante sur R+. Enfin, φ(0) = ln(2) et lim

x→+∞
φ(x) = +∞. Conclusion,

x

g

0 +∞

ln(2)ln(2)

+∞+∞

23. Par ce qui précède,

• La fonction φ est continue sur R+,
• la fonction φ est strictement croissante sur R+,
• R+ est un intervalle.

Donc par le théorème de la bijection, φ définit une bijection de φ dans φ (R+) et de plus, J = φ (R+) =ï
φ(0); lim

x→+∞
φ(x)

ï
= [ln(2); +∞[. Conclusion,

φ définit une bijection de R+ dans J = [ln(2); +∞[.

On note ψ = φ−1 sa réciproque.

24. DESSIN ! ! !
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Partie 4 : Etude de ψ

On admet dans la suite que ψ est C ∞ sur J .

25. Puisque ψ est C ∞ sur J , ψ est C 2 sur J donc notamment en ln(2) ∈ J . Donc par le théorème de
Taylor-Young, ψ admet un développement limité à l’ordre 2 en ln(2) :

∃ (a0, a1, a2) ∈ R3, ψ(y) =
y→ln(2)

a0 + a1 (y − ln(2)) + a2 (y − ln(2))2 + o
Ä
(y − ln(2))2

ä
.

26. On sait par la question 13.

φ(x) =
x→0

ln(2) + x+ 3x2

4 + o
(
x2) .

Donc
x =

x→0
ψ

Å
ln(2) + x+ 3x2

4 + o
(
x2)ã .

Posons y(x) =
x→0

ln(2) + x+ 3x2

4 + o
(
x2). Dès lors y(x) −→

x→0
ln(2). Donc par la question précédente,

x =
x→0

a0 + a1 (y(x) − ln(2)) + a2 (y(x) − ln(2))2 + o
Ä
(y(x) − ln(2))2

ä
.

Ou encore, en posant u(x) =
x→0

y(x) − ln(2) =
x→0

x+ 3x2

4 + o
(
x2),

x =
x→0

a0 + a1u(x) + a2u(x)2 + o
(
u(x)2) .

Calculons :

• u(x) −→
x→0

0,

• puis,

u(x)2 =
x→0

Å
x+ 3x2

4 + o
(
x2)ãÅx+ 3x2

4 + o
(
x2)ã =

x→0
x2 + o

(
x2) .

• Enfin,
o
(
u(x)2) =

x→0
o
(
x2 + o

(
x2)) =

x→0
o
(
x2) .

Ainsi,

x =
x→0

a0 + a1u(x) + a2u(x)2 + o
(
u(x)2)

=
x→0

a0 + a1x +a1
3x2

4 +o
(
x2)

+a2x
2 +o

(
x2)

+o
(
x2)

=
x→0

a0 + a1x+
Å3a1

4 + a2

ã
x2 + o

(
x2) .

Par unicité du développement limité,
0 = a0

1 = a1

0 = 3a1
4 + a2

⇔


a0 = 0
a1 = 1
a2 = −3a1

4 = −3
4

Conclusion,

a0 = 0, a1 = 1, a2 = −3
4 .
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27. Par la question précédente,

ψ(y) =
y→ln(2)

(y − ln(2)) − 3
4 (y − ln(2))2 + o

Ä
(y − ln(2))2

ä
.

Donc la courbe représentative de ψ admet une tangente en ln(2) d’équation

y = x− ln(2).

De plus, on a
ψ(y) − (y − ln(2)) ∼

y→ln(2)
−3

4 (y − ln(2))2 .

et pour tout y ⩾ 2, −3
4 (y − ln(2))2 ⩽ 0. Or deux équivalents ont même signe au voisinage du point

considéré. Donc la courbe représentative de ψ se trouve

en dessous de sa tangente au voisinage de ln(2).

Problème II - Ensembles et Applications
Soient E et F deux ensembles, f ∈ F (E,F ). On pose alors

φ : P (E) → P (F )
A 7→ f (A) .

1. On suppose f injective. Montrons que φ est injective. Soit (A,B) ∈ P (E)2 tel que φ (A) = φ (B) i.e.

f (A) = f (B) .

Montrons que A = B. Soit x ∈ A. Alors, f(x) ∈ f (A) = f (B). Donc f(x) ∈ f (B). Donc il existe
y ∈ B tel que f(x) = f(y) (attention, a priori y n’est pas x). Or la fonction f est injective donc
x = y ∈ B. Donc si x ∈ A alors x ∈ B. Ainsi,

A ⊂ B.

Or par symétrie des hypothèses sur A et B, on démontre de même que B ⊂ A. Donc A = B. Donc φ
est bien injective. Conclusion,

f injective ⇒ φ injective.

2. Montrons que φ injective ⇒ f injective. Supposons φ injective. Montrons que f est injective. Soit
(x, y) ∈ E2 tel que f(x) = f(y). Posons X = {x} et Y = {y}. Alors,

φ (X) = f ({x}) .

Par définition de l’ensemble image, f ({x}) est l’ensemble de toutes les images possibles lorsque la
variable varie dans {x} i.e. est égale à x et donc seule f(x) est possible comme image. Donc

φ (X) = f ({x}) = {f(x)} .

De même
φ (Y ) = f ({y}) = {f(y)} .

Or f(x) = f(y) donc {f(x)} = {f(y)}. Ainsi,

φ(X) = φ(Y ).

Or φ est injective. Donc X = Y i.e. {x} = {y}. Donc x = y. Donc f est bien injective. Conclusion,

φ injective ⇒ f injective.
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3. Soit B ∈ P (F ). On pose A = f−1 (B).

(a) Montrons que f (A) ⊂ B. Soit y ∈ f (A). Alors il existe x ∈ A tel que f(x) = y. Or A = f−1 (B).
Donc x ∈ f−1 (B) i.e. f(x) ∈ B. Donc y = f(x) ∈ B. Ceci étant vrai pour y quelconque dans
f (A). On conclut que

f (A) ⊂ B.

(b) On suppose dans cette question que f est surjective. Montrons que f (A) = B. On sait déjà que
f (A) ⊂ B donc montrons que B ⊂ f (A). Soit y ∈ B ⊂ F . Or f est surjective donc il existe
x ∈ E tel que y = f(x). Donc f(x) ∈ B donc x ∈ f−1 (B) = A. Donc on a y = f(x) et x ∈ A.
Donc y ∈ f (A). Ceci étant vrai pour y quelconque dans B, on en déduit que

B ⊂ f (A) .

Conclusion, à l’aide de la question précédente,

f (A) = B.

4. Supposons f surjective. Montrons que φ est surjective. Soit B ∈ P (F ). Posons A = f−1 (B). Alors,
puisque f est surjective, par la question précédente, B = f (A) = φ (A). Donc B admet bien un
antécédent par φ. Ceci étant vrai pour B quelconque dans P (F ). On en déduit que φ est surjective.
D’où

f surjective ⇒ φ surjective.

Réciproquement, supposons φ surjective. Montrons que f est surjective. Soit y ∈ F . Montrons que y
possède un antécédent par f . Posons Y = {y} ∈ P (F ). Or φ est surjective, donc il existe X ∈ P (E)
tel que φ (X) = Y i.e. f (X) = Y . Supposons X = ∅. Alors Y = f (∅) = ∅. Contradiction (car y ∈ Y ).
Donc X ̸= ∅. Soit x ∈ X. Alors f(x) ∈ f (X) = Y . Donc f(x) ∈ {y}. Nécessairement, f(x) = y. Donc
y a bien un antécédent par f . Ceci étant vrai pour y ∈ F quelconque, on en déduit que

φ surjective ⇒ f surjective.

Conclusion,
f surjective ⇔ φ surjective.

5. Par les questions 1. et 2., on a
f injective ⇔ φ injective.

Or par la question précédente, on a aussi f surjective ⇔ φ surjective. D’où

f bjective ⇔
®
f injective
f surjective

⇔
®
φ injective
φ surjective

φ bijective.

Conclusion,
f bijective ⇔ φ bijective.

Dans ce cas, on peut montrer que

φ−1 : P (F ) → P (E)
B 7→ f−1 (B) .
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Problème III - Continuité-dérivabilité et analyse asymptotique
On considère la fonction f définie par l’expression suivante :

f :

R −→ R

x 7−→

x2 arctan
Å1
x

ã
si x ̸= 0

0 si x = 0.

Dans tout le sujet, la notation DLp(a), où p ∈ N et a ∈ R ∪ {±∞}, signifie développement limité à l’ordre
p en a.
Partie 1 : Un résultat de cours

Soit n ∈ N.

1. On a les égalités suivantes :
1

1 + x2 =
x→0

1 − x2 + x4 − · · · + (−1)nx2n + o(x2n)

Ainsi,
1

1 + x2 =
x→0

1 − x2 + x4 − · · · + (−1)nx2n + o(x2n).

2. Par le théorème de primitivation du développement limité, on en déduit de la question précédente que

arctan x =
x→0

arctan(0) + x− x3

3 + x5

5 − · · · + (−1)n x
2n+1

2n+ 1 + o(x2n+1)

Or arctan(0) = 0, ce qui permet d’en déduire que

arctan x =
x→0

x− x3

3 + x5

5 − · · · + (−1)n x
2n+1

2n+ 1 + o(x2n+1).

Partie 2 : Application du théorème de prolongement C 1 et des accroissements finis

3. Montrons que la fonction f est continue en 0 i.e. lim
x→0

f(x) = f(0) i.e. lim
x→0

f(x) = 0.

Soit x ∈ R∗. Sachant que arctan( 1
x) ∈ [−π

2 ,
π
2 ] et x2 ⩾ 0, on a l’encadrement suivant :

−π

2x
2︸ ︷︷ ︸

→
x→0

0

⩽ f(x) = x2 arctan
Å1
x

ã
⩽
π

2x
2︸︷︷︸

→
x→0

0

On a lim
x→0

−π

2x
2 = lim

x→0

π

2x
2 = 0. Donc par le théorème d’encadrement, il vient que lim

x→0
f(x) = 0.

Ainsi,
f est continue en 0.

4. Montrons que f est impaire i.e.
ß

∀x ∈ Df , −x ∈ Df (i) ✓
∀x ∈ R, f(−x) = −f(x) (ii) .

(ii) Soit x ∈ R∗. Sachant que la fonction arctan est impaire, on a les égalités entre réels suivantes :

f(−x) = (−x)2 arctan
Å 1

−x

ã
= −f(x)

De plus f(0) = 0. Donc
∀x ∈ R, f (−x) = f(x).
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Ainsi, f est impaire , et sa courbe représentative est alors symétrique par rapport à l’origine.

On peut alors restreindre son étude à l’ensemble R+
∗ par exemple.

5. La fonction inverse est dérivable sur R∗ et la fonction arctangente est dérivable sur R. Donc par
composée, la fonction f est dérivable sur R∗ et :

∀x ∈ R∗, f ′(x) = 2x arctan
Å1
x

ã
+ x2

Ç
− 1
x2

1
1 + 1

x2

å
= 2x arctan

Å1
x

ã
− x2

1 + x2

Conclusion

∀x ∈]0,+∞[, f ′(x) = 2x arctan
Å1
x

ã
− x2

1 + x2 .

6. On observe les points suivants :

(i) La fonction f est C 1 sur R∗ comme composée de fonctions qui le sont.
(ii) La fonction f est continue sur R (notamment en 0 grâce à la question 3.)
(iii) De même que dans la question 3., on a

∀x ∈ R∗, 0 ⩽
∣∣∣∣2x arctan

Å1
x

ã∣∣∣∣ ⩽ 2 |x| π2 = πx.

Or lim
x→0

πx = 0. Donc par le théorème d’encadrement, on a

lim
x→0
x ̸=0

∣∣∣∣2x arctan
Å1
x

ã∣∣∣∣ = 0 ⇔ lim
x→0
x ̸=0

2x arctan
Å1
x

ã
= 0.

D’autre part, lim
x→0

x2

1 + x2 = 0. Donc par différence, on en déduit que

lim
x→0
x ̸=0

f ′(x) existe et vaut 0.

On en conclut que
la fonction f est C 1 en 0 et f ′(0) = 0.

7. Pour montrer que f est dérivable en 0 par la définition de la dérivabilité, on doit montrer que f(x)−f(0)
x−0

admet une limite quand x → 0. Calculons,

∀x ∈ R∗,
f(x) − f(0)

x− 0 = x arctan
Å1
x

ã
.

Or pour tout x ∈ R∗,
0 ⩽

∣∣∣∣x arctan
Å1
x

ã∣∣∣∣ ⩽ |x| .

De plus, lim
x→0

|x| = 0. Donc par le théorème d’encadrement,

lim
x→0
x ̸=0

∣∣∣∣x arctan
Å1
x

ã∣∣∣∣ = 0 ⇔ lim
x→0
x ̸=0

x arctan
Å1
x

ã
= 0.
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Ainsi, lim
x→0
x ̸=0

f(x) − f(0)
x− 0 existe et vaut 0. Conclusion,

la fonction f est dérivable en 0 et f ′(0) = 0.

Ce résultat est parfaitement cohérent avec la question précédente où l’on a établi que f est C 1 et donc
dérivable en 0 et on avait bien trouvé f ′(0) = 0.

8. Soit x ∈ ]0; +∞[. On observe les points suivants :

(i) la fonction arctan est continue sur [0;x],
(ii) la fonction arctan est dérivable sur ]0;x[ car x > 0.

Donc par le théorème des accroissements finis, il existe cx ∈ ]0;x[ tel que

arctan(x) − arctan(0)
x− 0 = arctan′ (cx) = 1

1 + c2
x

.

Conclusion,

∀x ∈ ]0; +∞[ , ∃cx ∈ ]0;x[ , arctan(x)
x

= 1
1 + c2

x

.

9. Soit x ∈ ]0; +∞[. Avec les notations de la question précédente, on a 0 < cx < x donc par la stricte
croissance de la fonction carrée sur R+, 0 < c2

x < x2. D’où par la stricte décroissance de la fonction
inverse sur R∗

+,

1
1 + x2 <

1
1 + c2

x

< 1 ⇒ x

1 + x2 <
x

1 + c2
x

< x car x > 0.

Conclusion,
∀x ∈ ]0; +∞[ , x

1 + x2 < arctan(x) < x. (⋆)

Partie 3 : Au voisinage de 0
10. Montrons que :

∀x ∈ R∗, arctan x+ arctan
Å1
x

ã
︸ ︷︷ ︸

h(x)

=


π

2 si x ∈ R∗
+ (i)

−π

2 si x ∈ R∗
− (ii)

(i) La fonction h ainsi définie est dérivable sur R+
∗ et :

∀x > 0, h′(x) = 1
1 + x2 − 1

x2
1

1 + 1
x2

= 1
1 + x2 − 1

x2 + 1 = 0

Sachant qu’une fonction nulle sur un intervalle y est constante, on en déduit qu’il existe λ ∈ R
telle que :

∀x > 0, h(x) = λ

C’est en particulier vrai pour x = 1 > 0, ce qui permet de trouver :

h(1) = λ ⇐⇒ arctan(1) + arctan(1) = λ ⇐⇒ λ = π

2

Ainsi, on a bien montré que pour tout x > 0, arctan x+ arctan
Å1
x

ã
= π

2 .
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(ii) On remarque que la fonction h introduite est impaire, ce qui permet d’en déduire :

∀x < 0, h(x) = −π

2
Conclusion,

∀x ∈ R∗, arctan x+ arctan
Å1
x

ã
= ε(x)π2 .

11. Soit x ∈ R∗. On a les égalités suivantes :

f(x) − ε(x)π2x
2 = x2 arctan

Å1
x

ã
− ε(x)π2x

2 = x2
Å

arctan
Å1
x

ã
− ε(x)π2

ã
= −x2 arctan x par la question précédente.

Ce qui permet d’écrire :

f(x) = ε(x)π2x
2 − x2 arctan x =

x→0
ε(x)π2x

2 − x2
Å
x− x3

3 + o(x4)
ã

=
x→0

ε(x)π2x
2 − x3 + x5

3 + o(x6).

Ainsi,

f(x) =
x→0

ε(x)π2x
2 − x3 + x5

3 + o(x6).

Par troncature à l’ordre 2,
f(x) =

x→0
ε(x)π2x

2 + o(x2).

Autrement dit,
f(x) ∼

x→0
ε(x)π2x

2.

Conclusion,
f(x) ∼

x→0
ε(x)π2x

2.

12. D’après la question précédente :

f(x) − [ax+ b] ∼
x→0

ε(x)π2x
2 avec a = b = 0

Ainsi, l’équation de la tangente T0 est y = 0.
Sachant que l’équivalent est strictement positif si et seulement si x > 0, on en déduit qu’au voisinage
de 0, Cf est en-dessous de T0 à gauche de 0 et lui est au-dessus à droite de 0.

Partie 4 : Au voisinage de +∞

13. Puisque u = 1
x −→

x→+∞
0, on a les égalités suivantes :

f(x) = x2 arctan
Å1
x

ã
=

x→+∞
x2
Å1
x

− 1
3x3 + 1

5x5 + o

Å 1
x6

ãã
=

x→+∞
x− 1

3x + 1
5x3 + o

Å 1
x4

ã
Conclusion,

f(x) =
x→+∞

x− 1
3x + 1

5x3 + o

Å 1
x4

ã
.

16/21



Mathématiques PTSI, DS5 Cor Vendredi 30 Janvier 2026

14. D’après la question précédente :

f(x) − x ∼
x→+∞

− 1
3x < 0 (au voisinage de +∞)

Ainsi, Cf admet une asymptote oblique en +∞ d’équation y = x . Sachant que − 1
3x < 0 au voisi-

nage de +∞, Cf est en-dessous de son asymptote au voisinage de +∞.

15. La fonction f étant impaire, Cf est symétrique par rapport à l’origine.
Ainsi, Cf admet une asymptote oblique en −∞ d’équation y = x ,
et Cf est au-dessus de son asymptote au voisinage de −∞.

16. D’après (⋆), on a
∀y ∈]0,+∞[, arctan(y) < y.

Soit x ∈]0,+∞[. Alors l’inégalité (⋆) étant vraie pour tout y ∈]0,+∞[, elle est en particulier vraie
pour y = 1

x >
ok !

0, ce qui permet d’en déduire que :

arctan
Å1
x

ã
<

1
x

⇐⇒
x2>0

x2 arctan
Å1
x

ã
< x ⇐⇒ f(x) < x

Ainsi, Cf est strictement en-dessous de son asymptote sur R+
∗ , et par imparité

est strictement au-dessus sur R−
∗ et les deux courbes s’intersectent au point d’abscisse x = 0.

Partie 5 : Graphe de f et de f−1

17. Après calculs, f(1) = π

4 , f(−1) =
imparité

−f(1) = −π

4 , f(
√

3) = π

2 et f
Å

− 1√
3

ã
= −π

9 .

18. Soit y ∈ ]0; +∞[. On sait par (⋆) que y
1+y2 < arctan(y). De plus arctan(y) > 0. Donc

∀y ∈ ]0,+∞[, y

1 + y2 < 2 arctan(y).

Etudions maintenant le signe de la dérivée de f .
Soit x ∈]0,+∞[. L’inégalité précédente étant vraie pour tout y ∈]0,+∞[, elle est en particulier vraie
pour y = 1

x ∈
ok !

]0,+∞[, ce qui permet d’écrire :

1
x

1 + 1
x2

< 2 arctan
Å1
x

ã
⇐⇒ x

1 + x2 < 2 arctan
Å1
x

ã
⇐⇒
x>0

x2

1 + x2 < 2x arctan
Å1
x

ã
Ainsi, pour tout x ∈]0,+∞[, f ′(x) > 0.
Remarque : f ′ est paire, donc on pourrait même conclure que pour tout x ∈ R∗, f ′(x) > 0.
On en déduit les tableaux de signes et variations suivants :

x

f ′(x)

f

−∞ +∞

+

0

0
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Concernant les limites, rappelons que d’après la question 13. :

f(x) ∼
x→+∞

x

ce qui permet d’en déduire que lim
x→+∞

f(x) = +∞. La limite en −∞ s’en déduit par imparité de la
fonction f . Conclusion,

x

f ′(x)

f

−∞ +∞

+

−∞−∞

+∞+∞

0

0

19. Cf question suivante.

20. La fonction f est continue sur l’intervalle I = R et y est strictement croissante, donc réalise une
bijection de I vers f(I) = R. Ainsi, la bijection réciproque f−1 existe et sa courbe représentative
Cf−1 (en rouge) s’obtient par symétrie de la courbe Cf (en bleu) par rapport à la droite d’équation
y = x (en noir).

Partie 6 : A propos de sa réciproque

On admet qu’il existe des coefficients réels a0, a1, b1, b2 tels que :

f−1(x) =
x→+∞

a1x+ a0 + b1
x

+ b2
x2 + ◦

Å 1
x2

ã
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21. D’après la question 13. on a

f(x) =
x→+∞

x− 1
3x + 1

5x3 + ◦
+∞

Å 1
x4

ã
=

x→+∞
x

Å
1 − 1

3x2 + o

Å 1
x2

ãã
=

x→+∞
x

Å
1 + o

Å1
x

ãã
.

Par conséquent, on a l’égalité asymptotique entre fonctions suivantes :

1
f(x) =

x→+∞

1
x

1
1 + o

( 1
x

) .
Or, 1

1+u =
u→0

1 + u+ o (u). Posons u =
x→+∞

o
( 1

x

)
. On a alors o (u) =

x→+∞
o
( 1

x

)
. Donc, on a les égalités

asymptotiques entre fonctions suivantes :

1
f(x) =

x→+∞

1
x

Å
1 + o

Å1
x

ã
+ o

Å1
x

ãã
=

x→+∞

1
x

+ o

Å 1
x2

ã
.

22. Pour tout x ∈ R, on pose y = f(x). D’après la question 13. on sait que f(x) ∼
x→+∞

x et que donc
notamment y = f(x) −→

x→+∞
+∞. Ainsi, on a les égalités asymptotiques entre fonctions suivantes :

x = f−1 (f(x)) = f−1(y) =
x→+∞

a1y + a0 + b1
y

+ b2
y2 + o

Å 1
y2

ã
=

x→+∞
a1y + a0 + b1

f(x) + b2
f(x)2 + o

Å 1
f(x)2

ã
.

Or nous avons vu que 1
f(x) =

x→+∞
1
x + o

( 1
x2

)
dont on déduit également que 1

f(x)2 =
x→+∞

1
x2 + o

( 1
x2

)
et

o
Ä

1
f(x)2

ä
=

x→+∞
o
( 1

x2

)
. D’où,

x =
x→+∞

a1f(x) + a0 + b1

Å1
x

+ o

Å 1
x2

ãã
+ b2

Å 1
x2 + o

Å 1
x2

ãã
+ o

Å 1
x2

ã
.

En utilisant la question 13. on obtient alors

x =
x→+∞

a1

Å
x− 1

3x + o

Å 1
x2

ãã
+ a0 + b1

x
+ b2
x2 + o

Å 1
x2

ã
=

x→+∞
a1x+ a0 − b1 − 3a1

3x + b2
x2 + o

Å 1
x2

ã
.

Autrement dit
(a1 − 1)x+ a0 − b1 − 3a1

3x + b2
x2 + o

Å 1
x2

ã
=

x→+∞
0.

ce qui n’est possible que si a1 − 1 = a0 = b1 − 3a1 = b2 = 0 (sinon on obtient 0 équivalent à un terme
non nul ce que l’on sait faux bien entendu). Par conséquent

a0 = 0, a1 = 1, b1 = 3a1 = 3, b2 = 0.

On conclut que

f−1(x) =
x→+∞

x+ 3
x

+ o

Å 1
x2

ã
.
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23. On retrouve bien d’une part que C −1
f admet la droite y = x pour asymptote oblique en +∞ (et donc

en −∞ par imparité, question 4.). D’autre part puisque

f−1(x) − x ∼
x→+∞

3
x
.

et que 3
x > 0 si et seulement si x > 0, on retrouve également le fait que C −1

f est asymptotiquement
au-dessus de la droite y = x en +∞ et asymptotiquement en-dessous de la droite y = x en −∞.

24. (i) On a b1
x = 3

x =
x→+∞

o(x) et f−1(x) ∼
x→+∞

x. Donc b1
x =

x→+∞
o
(
f−1(x)

)
et donc

f−1(x) n’est pas équivalent à b1
x

quand x tend vers +∞.

(ii) De la question 22. et du fait que o
( 1

x2

)
≪

x→+∞
3
x ≪

x→+∞
x = a1x, on en déduit directement que

f−1(x) ∼
x→+∞

a1x .

(iii) Puisque 50b2
1

x ≪
x→+∞

a1x = x, on en déduit que a1x+ 50b2
1

x ∼
x→+∞

a1x ∼
x→+∞

f−1(x) , d’après le

point (ii).

Partie 7 : Asymptote de g

On considère la fonction g définie sur son ensemble de définition Dg par l’expression :

g(x) = x

Å
f(x)
x

ãx

25. Par définition, pour tout x ∈ Dg, g(x) = x ex ln
Ä

f(x)
x

ä
. Soit x ∈ R, on a alors les équivalences suivantes :

x ∈ Dg ⇔


x ∈ Df

x ̸= 0
f(x)

x > 0
⇔

®
x > 0
f(x) > 0

OU

®
x < 0
f(x) < 0

.

Or pour tout x > 0, f(x) > 0 et pour tout x < 0, f(x) < 0 d’après la question 18. On en déduit donc
que Dg = R∗ .

26. D’après la question 2, on a

arctan(u) =
x→+∞

u− u3

3 + o
(
u3) .

Par conséquent,

g(x) = x ex ln(x arctan( 1
x )) =

x→+∞
x ex ln

Ä
x
Ä

1
x

− 1
3x3 +o

Ä
1

x3
äää

=
x→+∞

x ex ln
Ä
1− 1

3x2 +o
Ä

1
x2
ää
.

Posons u =
x→+∞

− 1
3x2 + o

( 1
x2

)
−→

x→+∞
0 alors o(u) =

x→+∞
o
( 1

x2

)
. Or ln (1 + u) =

u→0
u+ o(u). Donc

g(x) =
x→+∞

x ex
Ä
− 1

3x2 +o
Ä

1
x2
ää

=
x→+∞

x e− 1
3x

+o( 1
x ) .

Posons v =
x→+∞

− 1
3x + o

( 1
x

)
−→

x→+∞
0. De même que précédemment, on a o(v) =

x→+∞
o
( 1

x

)
. De plus

ev =
v→0

1 + v + o(v). Donc,

g(x) =
x→+∞

x

Å
1 − 1

3x + o

Å1
x

ãã
=

x→+∞
x− 1

3 + o (1) .

On en déduit que Cg possède une asymptote oblique en +∞ d’équation y = x− 1
3 .
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Partie 8 : Pour les plus rapides

27. Soit x ∈]0; +∞[, par définition de f , on a

(E) ⇔ 4x
Å 1

(2x)2 arctan (2x)
ã

+ 9x
Å 1

(3x)2 arctan(3x)
ã

= π

4x

⇔ 1
x

arctan (2x) + 1
x

arctan(3x) = π

4x

(E) ⇔ arctan (2x) + arctan(3x) = π

4 car x ̸= 0.

28. Soit x ∈]0; +∞[, puisque π
4 ∈

]
−π

2 ; π
2
[
, on peut composer l’équation (E) par la fonction tangente :

(E) ⇔
®

tan (arctan(2x) + arctan(3x)) = tan
(

π
4
)

arctan(2x) + arctan(3x) ∈
[
0; π

2
[
.

Pour tout x ∈]0; +∞[, on a arctan(2x) ∈
]
0; π

2
[

et arctan(3x) ∈
]
0; π

2
[
, donc on peut utiliser la formule

tan(a+ b) = tan(a)+tan(b)
1−tan(a) tan(b) et le fait que tan (arctan(u)) = u pour tout u ∈ R, on en déduit que

(E) ⇔

{ tan(arctan(2x))+tan(arctan(3x))
1−tan(arctan(2x)) tan(arctan(3x)) = 1
arctan(2x) + arctan(3x) ∈

[
0; π

2
[

⇔
®2x+3x

1−6x2 = 1
arctan(2x) + arctan(3x) ∈

[
0; π

2
[

⇔


5x = 1 − 6x2

1 − 6x2 ̸= 0
arctan(2x) + arctan(3x) ∈

[
0; π

2
[

⇔


6x2 + 5x− 1 = 0
x2 ̸= 1

6 .

arctan(2x) + arctan(3x) ∈
[
0; π

2
[

Soit ∆ le discriminant associé à 6x2 + 5x− 1, on a

∆ = 25 + 26 = 49 = 72 > 0.

Alors les racines sont
x = −5 − 7

12 = −1 OU x = −5 + 7
12 = 1

6 .

Puisque x > 0, il va de soi que x ̸= −1. Donc x = 1
6 est l’unique racine possible. Dans ce cas, on a bien

x2 ̸= 1
6 , et 2x = 1

3 <
1√
3 ainsi que 3x = 1

2 < 1 Par conséquent, on a bien 0 < arctan(2x)+arctan(3x) <
π
6 + π

4 <
π
2 . Conclusion,

x = 1
6 est l’unique solution de (E).
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