Mathématiques PTSI, DS5 Cor Vendredi 30 Janvier 2026

Corrigé du Devoir Surveillé 5
Analyse asymptotique, ensembles et
applications, continuité et dérivabilité

Probléeme I - Analyse asymptotique

Exercice A
. . . 3 3 _ 2 3 3

1. On sa31t que sin(z) o L+ 0(a?). De plus e" o 1+u+% + % +o0(u?). Posons u(x) =

rT—"% +o (:c?’) On a alors les points suivants :

o u(z) — 0.

z—0
e De plus,
3 3
u(z)? =, <:c —5 to (x3)> <ac -5 o (:U3)>
B
- 3 3 _ .3 3
o Puis, u(z) oot donc u(z) e u(z) S, o (2?).
o Enfin, ‘
o (u(z)?) =0 (2 + 0 (2%)) =0 (%)
Ainsi,
2 3
in(z) _ vLn 3
e ol HuT 2 % +o(w)
3
wiol—i—x 2 —Z +o(a?)
+5 +o (z%)
+2 4o (27)
+o (%)
2
ST 4y +o (2?)
De plus,
z—0 2 2 6
_ Lo, 1o 3
x:01+x—§4:p +E8m —I-o(x )
2 23 3
xiol+x_?+?+o(‘r )

Par différence,

sin(x) a? 3 a? a 3 2 a 3
h(z) =€ —\/H72:c1301+x+?+o(x)— 1+x—?+?+o(x) = z _74_0(%)‘

Conclusion,
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D’autre part, cos(z) o 1- % + 0 (2*). Donc
22
1 — cos(x) oz O (z%).
Donc s
) = hz) x2—2%+0(:c3) _ 2—$+O(l‘)‘

1-— COS(J;) z—0 zZ 49 (.CUS) z—=0 140 (aj)

Posons v(z) = o (z). Alors v(x) = 0eto(v(z))) o (z). Or 1 o 1 — v+ o(v). Donc
Alinsi,

f(z) = 2—xz+o(x)(1+o0(x)) miOQ—x—i-o(x).
Conclusion,

flz) = 2—z+o(x).

x—0

2. Soit g : & — Va2 +x4tan(1) +In (4+arctan( )+In(1+ x)) On note que pour tout z > ; on a
0<1<“donctan(1) 'steet1+x>1donc4+arctan(%) ( )>4>Oetm + 2t >0
donc g est bien définie sur | 2; +oo[. Pour tout = > %, posons h = 1 On a

1
g(x) = h2 h tan (h) + In (4 + arctan (h) + In (1 4+ h))
V14 h?
= th tan (h) + In (4 + arctan (h) + In (1 + h)) car h? > 0.
Or quand h — 0, on a
h? 9
2 _— -
VIR = 14+ o +o ()
tan(h) o h+ 3 + o (h*)
arctan(h) = h+o(h)
h—0
In(1+h) = h+o(h)
h—0
Donc d’une part,
1 1 V14 h?

= o o (1)
+B 4o (hP)
+o (h%))
3
=, 2% to (h?))
1 5h
wSon T oW
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D’autre part,

In (4 + arctan (h) + In (1 + h)) o In(4+h+o(h)+h+o(h))
= In(4+2h+o(h))

h—0

=, (4) +n <1+g+o(h))-

Posons u(h) = %+ 0(h). Alors,
h—0

« o(u(h)) = o (4 +0(h))

Or In (14 u)

hso’ ().
u + o (u). Donc

u:>0

1n(4—|—arctan(h)+ln(1+h))h— ln(4)+g+0(h)+o(h) = ln(4)+g+o(h).

Ainsi,
1 b5h h
g(x) o h + 5 +o(h)+1In(4)+ 5 +o(h)
1 8h
Finalement,

4 1
g(x) ot In(4) + 3 +o (a:) .

Donc la courbe représentative de g admet une asymptote en +oo d’équation

‘yzm+b@w

De plus, on a g(x) — (x + 1n(4)) ~, o et pour tout z > 0, 5= > 0. Or deux équivalents ont méme
T—r

signe au voisinage du point considéré. Donc pour = assez grand, g(z) — (x +1n(4)) > 0 et donc la
courbe représentative de g est

‘au-dessus de son asymptote au voisinage de +ooc. ‘

Probléme B

Partie 1 : Construction de f

Pour tout z € R*, on pose

3. Soit n € N. On sait que

Donc
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Enfin,
n+1 k1
fo(z) o > i +o(z")
k=1
Posons k=k—1.Sik=1,k=0etsi k=n+1, alors k = n. D’oll
@ = 3o
fo(z) = = +o(z"
T |
—0 o (k; + 1)
Conclusion,
n .’Ek "
fo(®) xio];) (k+1)! +o(a")

Pour n =3, on a

1 T 2 a3
fo({L‘)x_mF-F +§+7+0( )
Conclusion,
z2 23

fo(x)xiol+2+€+ﬂ+o( )

Par la question précédente,
0

X
fo(l‘) :E~>0 F +o0 (1) mj(] 1+ O(].)
Donc lim f(x) =1 et

z—0

x#0

‘ fo est bien prolongeable par continuité en 0‘

en posant pour tout z € R*, f(z) = fo(z) et | f(0) = 1]

Par la question [3] on a aussi

zk

1@ S )

En particulier f admet un développement limité a ’ordre 1 en 0. Donc

+o(x").

‘ f est dérivable en 0. ‘

Cependant ‘rien ne nous garantit a priori si f est €' ou €™ ou non ‘

Pour tout x € R*, par factorisation par ’angle moitié,

*—1  ser—e2 . 2sh(%
f@) = fol) = St — o S 3 25003)
T x x
Conclusion, en prenant |a = b= 1/2|, on a bien
2sh (2)e2
Ve e R*,  f(x)= sh(3) e
x
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8. On sait que

D’autre part,

Par suite,

z—0

Conclusion, on retrouve bien le résultat de la question [4]

Partie 2 : Construction de ¢

On donne

2 xS

x—+—+0(:ﬂ3).

f(x) Y

T
:]_ —
gt

T—

On admet que f est continue sur R et on donne

f(x)

Pour tout z € R, on pose

i T
500 26 Taa°

(%) -

Flz) = /0 ") dt.

On définit également pour tout x € |0; +o00],

2z ot
Po(x) :/ ?dt-

9. Soit x € ]0;4+o00[. Alors [x;2x] C RY. De plus t — % est continue sur R* donc sur [z;2z]. Donc

2z ot
o) / — dt existe.
€T t

Ceci étant vrai pour tout = € ]0; +00[, on en conclut que

‘gpo est bien définie sur ]0; +oo]. ‘

/21
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10.

11.

12.

13.

Puisque la fonction f est continue sur R et 0 € R,

‘par le théoréeme fondamental de ’analyse,

F existe, est bien définie sur R et est une primitive de f de R. Or f est continue donc

Fest €' sur Ret F' = f.

Puisque f(z) o 1+35+ ‘%2 + ‘;731 +o (x?’), par le théoreme de primitivation du développement limité,
2 3 4
x x x
F(:U)m:OF(O)+x+Z+E+%+O( )

Or F(0) = f(? ft)dt = foo f(t)dt = 0. Conclusion,

2 3 4
T €T €T
F — Lot
() Somt Tt to)

Soit & € ]0; +00[. On a les égalités dans R suivantes :
2x e
polw) = [ T

2m_
/e +dt

2x e 2z 1
/ dt + / par linéarité de l'intégrale

0 gt 1 2z ot 9
/ ; / dt + [In (22" par la relation de Chasles

T ot 1
:—/ et dt + F (2z) + In (22) — In(z) car x >0
0

=—F(z)+ F(2z) +1n (255)

x

= F (2z) — F(z) + In(2).

Conclusion,
Vo €]0;+00], o) = F (22) — F(x) + In(2). |
Par la [IT]
2 .3 A A
F( >xi0 +*+E+%+O(.%’ )
4% 8x3 24t 4
F(Z:l?) x:>02x+7+§+%+0(x )

Donc par la question précédente,

Conclusion,
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14. Notamment, ¢, (z) =, In(2) + o (1). Donc lin% ¢o(z) = 1In(2). Ainsi,
z— z—
x>0

’ g est prolongeable par continuité en O‘

en posant
R+ — R

N wolz) six#0
In(2) siz=0.

Partie 3 : Etude de ¢

15. Par la question [13.|on a
2

3
o(z) = In(2) + = + % +o (1‘2) .

Donc le graphe de ¢ admet une tangente en 0 d’équation

‘y:ln(2)+x.‘

De plus,
32
o(x) = (In(2) + ) ~ —

x—0 4

et pour tout z € R, % > 0. Or deux équivalents ont méme signe au voisinage considéré. Donc au
voisinage de 0, p(z) — (In(2) +z) > 0 et

‘le graphe de ¢ est au-dessus de sa tangente au voisinage de 0. ‘

16. Par les questions précédentes,
Ve €10;+oo, (@) = go(z) = F (22) - F(z) +In(2).

Or F est €' sur R. Donc

@ est €' sur ]0; +-o0].

De plus, pour tout z € ]0;; +o0],

P(@) = 2P (20) - F'(2)
=2f(2z) — f(x) par la question [10]
2 1 ¥ -1

-2 —
2x T
B 2 —1 —e% 41
N T
eQ;E — et
- x
Conclusion,
2x T
e’ —e
Vo € 0,400,  ¢'(z) =
x
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17. Posons x =14+ hie. h=x—1. Quand z — 1, on a h — 0. Par la question précédente,

2x T
o eT—e
pla)=—
_62+2h_el+h
T 1+h
o (e2e2h—eeh) (1—h+h2—h3+0(h3))
—
= <2<1+2h+4h2+8h3+ (h3)>— <1+h+h2+h3+ (h3)>>
oo \°© 2 6 ¢ ¢ 2 "6 ¢
x (1—h+h*—h+o0(h%)
4e? —¢ 8e2 —e
hi0<e2—e+(2e2—e)h+ 5 h? + 5 h3+0(h3)>(1—h+h2_h3+0(h3))
hjer—e +(2e2—¢)h +74622*eh2 +78626*eh3 +o (h?)
—(eQ—e)h —(262—e)h2 —#h‘? +0(h3)
+(62—e)h2 +(262—e)h3 +0(h3)
(2B o (kY
+o (h?)
hj0e2—e +e?h + (e —5) h? —i—#hg +o (h?).
Conclusion,

ez—i—e

(x—1)> —I—O((:r — 1)3).

rz—1

O (x) = 2 —e42e?(x—1) + (eQ _g> (x—1)%+

18. Par la question précédente, ¢’ admet un développement limité a I'ordre 1 en 1 donné par

O(x) = e2—e42e?(x—1)+o(z—1).

z—1

Or ¢ est une primitive de ¢ sur ]0; +o0o| (voisinage de 1). Donc par le théoréme de primitivation du
développement limité :

olr) = <p(1)—|—(e2—e) (x—1)+e2(3:—1)2+0((a:—1)2).

On en déduit que le graphe de ¢ admet une tangente en 1 d’équation

y:go(l)-i-(ez—e) (r—1).

De plus,
p(x) — 1)+ (e*—e) (zr—1) ~ e*(z—1)>.

rz—1

et pour tout r € R, e?(x — 1)2 > 0. Or deux équivalents ont méme signe au voisinage du point
considéré. Donc le graphe de ¢ est au voisinage de 1,

‘au dessus de sa tangente.

19. Soit & > 0 et t € [x;2z]. Par croissance de l'intégrale, e! > e®. D’autre part 0 < t < 2z donc par
décroissance de la fonction inverse sur ]0; +oo], % > % Les termes étant positifs, par produit,

et e”

> .

Vo € ]0;+oo, Vt € [x;2x], T2 5

en
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20.

21.

22.

23.

24.

Soit x € ]0; +oo[. Alors 2z > x (important!). Donc par la question précédente et la croissance de
Iintégrale, on a
2x et 2x e’ eT 2x eT e”
—dt > —dt & x:—/ 1ldt=— x 2z —x) = —.
/xt/xQx o) =g | 2z % )=

Conclusion,

Vz € ]0; 400, p(x) = %.

T

e
On sait que lir}rl 5= +00. Donc par la question précédente et le théoréme de minoration,
Tr—r+00

5 SOUTS ; 4ol e(@) - € : 4
De plus,x toujours par la question précédente, pour tout z > 0, == > 5. Or par croissance comparée,

. € s s . .
lim — = +4o00. Par le théoréme de minoration,
z—+00 21
) x
lim #(x) = +4o0.
r—-+o0o X
Conclusion,

le graphe de ¢ présente une branche parabolique verticale en +oc.

621‘ —_ et

On sait que ¢ est dérivable sur |0; 4-o00[ et Va € ]0;4o00[, ¢'(x) = “—°-. La fonction exponentielle
étant strictement croissante sur RY, z <2z = e* < e?*. Donc

Vz €]0;+00[, () >0.

Donc la fonction ¢ est strictement croissante sur ]0; +o00[. Or ¢ est continue en 0. Donc ¢ est stricte-
ment croissante sur R;. Enfin, ¢(0) = In(2) et liril ¢(x) = +00. Conclusion,
T—r1+00

x 0 +0o0

g /

In(2)

+o00

Par ce qui précede,

o La fonction ¢ est continue sur R,
e la fonction ¢ est strictement croissante sur R,
e R, est un intervalle.
Donc par le théoreme de la bijection, ¢ définit une bijection de ¢ dans ¢ (R4) et de plus, J = ¢ (R4) =
©(0); mgrfoo () { = [In(2); +o0[. Conclusion,

‘gp définit une bijection de Ry dans J = [In(2); +oo|. ‘

1

On note ) = = sa réciproque.

DESSIN!'!!
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On admet dans la suite que v est € sur J.

25. Puisque 9 est € sur J, ¢ est €2 sur J donc notamment en In(2) € J. Donc par le théoréme de
Taylor-Young, 1 admet un développement limité a ’ordre 2 en In(2) :

(a0, a1,a2) RS, W(y) = ag+a1(y—In(2))+az(y—(2)’+o((y—(2)?).

y—In(2)

26. On sait par la question [13.
2

o(r) = In(2) +x+ S22 —i—o(a:2) .

z—0 4
Donc
= w(ln(Q)—i— AL ( 2))
T = z+ == +o(a?) ).
Posons y(z) = In(2) +x+ % + 0 (2%). Dés lors y(x) — In(2). Donc par la question précédente,
z—0 z—0

z = ag+a1 (y(x) - In(2)) + a2 (y(2) — n(2))* + 0 ((y(x) — n(2))*).

d

Ou encore, en posant u(z) =, y(z) —In(2) =%t % + 0 (2?),
T— T—

r = a0+ a1u(z) + azu(z)? + o (u(z)?).

T—

Calculons :

o u(x) = 0,

e puis,
322 322
u(z)? = (x + e +o (m2)> <:E + o +o (x2)> = 2 +o (932) .
o Enfin,
o (u(z)?) =0 (2* + o (2?)) =0 (z?)
Ainsi,

T =, aru(z) + agu(z)® + o (u(w)Z)

T—
=, 00+ @ +a1% +o (2?)
+a2$2 +o (xz)
+o0 (2?)

3a1 2 2
:an+a1x+<7+a2>m + o0 ().

T—

Par unicité du développement limité,

0 = aq ag — 0
=a <~ ay =
0 —3ZI+CL as ——%:—%
Conclusion,
CL(]—O, al—l, ag——z.

10/21
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27. Par la question précédente,

W) =, =10 = § = 1n@)* + o (s~ ()?).

Donc la courbe représentative de 1) admet une tangente en In(2) d’équation

‘y:m—ln(Z).‘

De plus, on a

b) — -1n@) ~ - @y—In(2)?.

y—In(2) 4

et pour tout y > 2, —3 (y — In(2))? < 0. Or deux équivalents ont méme signe au voisinage du point
considéré. Donc la courbe représentative de v se trouve

‘en dessous de sa tangente au voisinage de In(2). ‘

Probléme II - Ensembles et Applications

Soient E et F' deux ensembles, f € . (E, F). On pose alors
A — f(4).
1. On suppose f injective. Montrons que ¢ est injective. Soit (A, B) € & (E)? tel que ¢ (A) = ¢ (B) i.e.

f(A)=[(B).

Montrons que A = B. Soit z € A. Alors, f(x) € f(A) = f(B). Donc f(z) € f(B). Donc il existe
y € B tel que f(x) = f(y) (attention, a priori y n’est pas ). Or la fonction f est injective donc
x =1y € B. Donc si x € A alors z € B. Ainsi,

A C B.

Or par symétrie des hypotheses sur A et B, on démontre de méme que B C A. Donc A = B. Donc ¢
est bien injective. Conclusion,

’f injective = ¢ injective.‘

2. Montrons que ¢ injective = f injective. Supposons ¢ injective. Montrons que f est injective. Soit
(z,y) € E? tel que f(x) = f(y). Posons X = {z} et Y = {y}. Alors,

p (X) =f({z}).

Par définition de I'ensemble image, f ({x}) est 'ensemble de toutes les images possibles lorsque la
variable varie dans {x} i.e. est égale & x et donc seule f(z) est possible comme image. Donc

v (X) = f({z}) ={f(2)}.

De méme

e (Y)=f{y}) ={fW}.
Or f(z) = f(y) donc {f(2)} = {f(y)}. Ainsi,

Or ¢ est injective. Donc X =Y i.e. {x} = {y}. Donc & = y. Donc f est bien injective. Conclusion,

’cp injective = f injective.‘

11/21
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3. Soit B € & (F). On pose A = f~1(B).

(a) Montrons que f (A) C B. Soit y € f (A). Alors il existe x € A tel que f(z) =y. Or A= f~1(B).
Donc z € f~!1(B) ie. f(z) € B. Donc y = f(z) € B. Ceci étant vrai pour y quelconque dans
f (A). On conclut que

f(A) CB.

(b) On suppose dans cette question que f est surjective. Montrons que f (A) = B. On sait déja que
f(A) € B donc montrons que B C f(A). Soit y € B C F. Or f est surjective donc il existe
x € E tel que y = f(z). Donc f(z) € Bdoncz € f~!(B) = A. Doncon ay = f(x) et z € A.
Donc y € f (A). Ceci étant vrai pour y quelconque dans B, on en déduit que

BcC f(A).
Conclusion, a 'aide de la question précédente,

f(A) =B.

4. Supposons f surjective. Montrons que ¢ est surjective. Soit B € & (F). Posons A = f~!(B). Alors,
puisque f est surjective, par la question précédente, B = f(A) = ¢ (A). Donc B admet bien un
antécédent par ¢. Ceci étant vrai pour B quelconque dans & (F). On en déduit que ¢ est surjective.
D’ou

f surjective = ¢ surjective.

Réciproquement, supposons ¢ surjective. Montrons que f est surjective. Soit y € F'. Montrons que y
possede un antécédent par f. Posons Y = {y} € & (F). Or ¢ est surjective, donc il existe X € & (E)
tel que ¢ (X) =Y ie. f(X) =Y. Supposons X = (). Alors Y = f ()) = (). Contradiction (car y € V).
Donc X # (). Soit z € X. Alors f(x) € f(X) =Y. Donc f(z) € {y}. Nécessairement, f(x) =y. Donc
y a bien un antécédent par f. Ceci étant vrai pour y € F' quelconque, on en déduit que

p surjective = f surjective.

Conclusion,

‘f surjective < ¢ surjective.

5. Par les questions[I] et [2] on a
f injective < ¢ injective.

Or par la question précédente, on a aussi f surjective < ¢ surjective. D’ou

¢ bijective.

injective injective
f bjective < {f ! & {90 !

f surjective (o surjective

Conclusion,
f bijective < ¢ bijective.

Dans ce cas, on peut montrer que

12/21
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Probleme III - Continuité-dérivabilité et analyse asymptotique

On considere la fonction f définie par ’expression suivante :
R — R
1
f: 22 arctan () six#0
T x
0 siz = 0.

Dans tout le sujet, la notation DL,(a), ou p € N et a € RU {£o0}, signifie développement limité a I'ordre
p en a.
Partie 1 : Un résultat de cours

Soit n € N.

1. On a les égalités suivantes :

1
: +x2 xio 1— $2 —I—l’4 et (_1)nx2n + 0(33211)
Ainsi,
1 4
To oSl % T =+ ()2 Fola™).

2. Par le théoreme de primitivation du développement limité, on en déduit de la question précédente que

I g2 _—
t = arctan(0 — (-1
arcanxz_)(]arcan()—kaz 5t +(-1) 2n+1+o(az )
Or arctan(0) = 0, ce qui permet d’en déduire que
3 5 2n+1
A R A N 2n+1
arctans = 3 + 3 + (—1) 1 + o(x*").

Partie 2 : Application du théoréme de prolongement ¢ et des accroissements finis

3. Montrons que la fonction f est continue en 0 i.e. lim f(x) = f(0) i.e. lim f(z) = 0.
z—0 z—0

Soit « € R*. Sachant que arctan(%) € [-Z,%] et 22 > 0, on a 'encadrement suivant :

T 1 T
—§x2 < f(z) = z? arctan () < 5;52
T
~— ~~
-0 — 0
x—0 z—0

™ 7T
On a lim ——22 = lim —2% = 0. Donc par le théoréme d’encadrement, il vient que lim f(x) = 0.
Ainsi z—0 x—0 2 z—0

insi,

’ f est continue en 0. ‘

Ve € Yy, —x € Dy (1) v
Ve e R, f(—x)=—f(x) (i) '

4. Montrons que f est impaire i.e. {

Soit x € R*. Sachant que la fonction arctan est impaire, on a les égalités entre réels suivantes :

f(=z) = (—z)%arctan <1> =—f(x)

—T

De plus f(0) = 0. Donc
Vz € R, f(—z) = f(z).

13/21]
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Ainsi, | f est impaire |, et sa courbe représentative est alors symétrique par rapport a ’origine.

On peut alors restreindre son étude a 1’ensemble R} par exemple.

5. La fonction inverse est dérivable sur R* et la fonction arctangente est dérivable sur R. Donc par
composée, la fonction ‘ f est dérivable sur R* | et :

Vz € R*, f'(z) = 2z arctan <1> + 22 ENEE N 2x arctan <1> — i
’ - T 21+ 5 ) /)  14a?

Conclusion

1 2
Vo €]0,4+o00[, f'(z) = 2xarctan (x) ] j_ 22

6. On observe les points suivants :

(i) La fonction f est € sur R* comme composée de fonctions qui le sont.
(ii) La fonction f est continue sur R (notamment en 0 grace a la question (3.)

(iii) De méme que dans la question 3., on a

™

1
Vo € RY, 0 < |2z arctan ()‘ < 2] 5 = T

X

Or liH(l) mx = 0. Donc par le théoreme d’encadrement, on a
g

lim
z—0
x#0

1 1
2z arctan ()‘ =0 < lim 2z arctan () =0.
€T z—0 €T
x#0

2

D’autre part, lim = 0. Donc par différence, on en déduit que
T—

014 22

lim f'(z) existe et vaut 0.
z—0
x#0

On en conclut que

la fonction f est €1 en 0 et f'(0) = 0.

7. Pour montrer que f est dérivable en 0 par la définition de la dérivabilité, on doit montrer que
admet une limite quand x — 0. Calculons,

f(@)=f(0)
z—0

Vr € R, M = rarctan (1) .
xz—0 T
Or pour tout = € R*,
1
0 < |z arctan ()‘ <zl
x

De plus, lir% |z| = 0. Donc par le théoréme d’encadrement,
r—r

lim
x—0
z#0

1 1
T arctan ()‘ =0 & lim z arctan (—) =0.
T

z—0
x#0
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Ainsi, lim M existe et vaut 0. Conclusion,
"o T

la fonction f est dérivable en 0 et f'(0) = 0.

Ce résultat est parfaitement cohérent avec la question précédente ot 'on a établi que f est €' et donc
dérivable en 0 et on avait bien trouvé f'(0) = 0.

8. Soit = € ]0; +00[. On observe les points suivants :

(i) la fonction arctan est continue sur [0; z],

(ii) la fonction arctan est dérivable sur |0;z[ car x > 0.
Donc par le théoréeme des accroissements finis, il existe ¢, € |0; z[ tel que

arctan(x) — arctan(0)

= arctan’ (¢;) =

z—0 14+¢2°
Conclusion,
t 1
YV € ]0; 400, Jep € 105 2], arctan(z) = 5
T 1+c2

9. Soit x € ]0; 4+o00[. Avec les notations de la question précédente, on a 0 < ¢, < z donc par la stricte
croissance de la fonction carrée sur Ry, 0 < ¢2 < x2. D’ou par la stricte décroissance de la fonction

inverse sur R ,

1 1 T x

< <1 = < < > 0.
1+22 1+ 1+22 " 1+¢2 . car e
Conclusion,
Vx €]0;4o00[, T3 22 < arctan(x) < x. (%)
Partie 3 : Au voisinage de 0
10. Montrons que :
T
1 — sizeRL  (3)
Vr € R*, arctanz + arctan () = 2, -
x 5 size R (i)
h(z)

La fonction h ainsi définie est dérivable sur R} et :

1 1 1 1 1

e —— g — :0
1+ 22 x21+m% 1422 2241

Vz >0, h'(x)

Sachant qu’une fonction nulle sur un intervalle y est constante, on en déduit qu’il existe A € R

telle que :
Ve >0, h(z)=A

C’est en particulier vrai pour x = 1 > 0, ce qui permet de trouver :

h(1) = XA <= arctan(1l) 4+ arctan(l) = A <= A = %

N

1
Ainsi, on a bien montré que pour tout x > 0, arctan x + arctan () =
x
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On remarque que la fonction h introduite est impaire, ce qui permet d’en déduire :
Ve <0, h(z)=-—

Conclusion,

1
Vo € R*, arctanz + arctan () =¢(z)

11. Soit z € R*. On a les égalités suivantes :

f(x) — 5(33)E1‘2 = z%arctan <%) — 6(x)zx2 =22 (arctan (%) - s(x)ﬁ>

2 2 2
= —z?arctanx par la question précédente.
Ce qui permet d’écrire :
3
_ T o 2 _ T2 2. T 4 >
f(x) =e(x) pt — arctan = e(x) 5% (:E 3 + o(x")
5
_ m™a 3, % 6
x:05($)2x x° + 3 + o(z2°)
Ainsi,
T 2 3 ° 6
fl@) = el)5a? = + 5+ ola)
Par troncature a 'ordre 2,
_ T 2 2
f@) = e(@)5a® + ola?)
Autrement dit,
T 2
fl@) ~ )5

Conclusion,

12. D’apres la question précédente :

_ ~ T2 — b=
f(z) — [ax + b] I_)()a(x)zx avec a =b =10

Ainsi, ‘l’équation de la tangente Ty est y = 0. ‘
Sachant que I’équivalent est strictement positif si et seulement si z > 0, on en déduit qu’au voisinage
de 0, € est en-dessous de Ty a gauche de 0 et lui est au-dessus a droite de 0.

Partie 4 : Au voisinage de +oo

13. Puisque u = % — 0, on a les égalités suivantes :
T—r+00

1 1 1 1 1
2 2
f@)=e arctan<x> rtoo (:U_S:c3+5x5+0<566)>

B 1+1+<1>
sotoc | Bz bad O \zt

Conclusion,

f() B 1 1 <1>
$x_)100$—3x+5x3+0 i)
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14. D’apres la question précédente :

flz)—= el T35 < 0 (au voisinage de +00)

1
Ainsi, ‘%f admet une asymptote oblique en 400 d’équation y = x ‘ Sachant que 3. < 0 au voisi-
x

nage de 400, ‘%”f est en-dessous de son asymptote au voisinage de +oo. ‘

15. La fonction f étant impaire, ¢ est symétrique par rapport a 'origine.

Ainsi, “Kf admet une asymptote oblique en —oco d’équation y = x ‘,

et ‘%f est au-dessus de son asymptote au voisinage de —oo. ‘

16. D’apres (%), on a
Vy €]0, +00[, arctan(y) < y.

Soit x €]0,4o00[. Alors l'inégalité (%) étant vraie pour tout y €]0,+oc], elle est en particulier vraie
pour y = % i' 0, ce qui permet d’en déduire que :
oK !

1\ 1 ) 1
arctan | — | < — <=z arctan | — | <z <= f(z) <=
x T 22>0 x

Ainsi, | €} est strictement en-dessous de son asymptote sur R} || et par imparité

est strictement au-dessus sur R, | et les deux courbes s’intersectent au point d’abscisse z = 0.

Partie 5 : Graphe de f et de f~!

17. Apres calculs, | f(1) = %, f(=1) Ny —f(1) = —%, f(V3) = g et f (_\}§> = _g_

18. Soit y € ]0; +00[. On sait par (%) que ﬁ < arctan(y). De plus arctan(y) > 0. Donc

Y
—— < 2arctan(y).

Vy €10, +o0f, Tty

Etudions maintenant le signe de la dérivée de f.

Soit x €]0, 400]. L’inégalité précédente étant vraie pour tout y €]0, +00], elle est en particulier vraie
pour y = % E']O, +ool, ce qui permet d’écrire :
OK .

1

1
z T < 2 arctan () <=
1+?2 T

1 x? 1
< 2arctan | — | <<= —— < 2zrarctan | —

1+ 22 /) >0 1+ 22 x

Ainsi, pour tout z €]0,+o0c[, f'(x)> 0.
Remarque : f" est paire, donc on pourrait méme conclure que pour tout x € R*, f'(x) > 0.

On en déduit les tableaux de signes et variations suivants :
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Concernant les limites, rappelons que d’aprés la question [I3]:

fl@) ~ =

ce qui permet d’en déduire que liIJIrl f(x) = 4o00. La limite en —oo s’en déduit par imparité de la
T—>+00

fonction f. Conclusion,

19. Cf question suivante.

20. La fonction f est continue sur l'intervalle I = R et y est strictement croissante, donc réalise une
bijection de I vers f(I) = R. Ainsi, la bijection réciproque f~! existe et sa courbe représentative
-1 (en rouge) s’obtient par symétrie de la courbe ¢ (en bleu) par rapport a la droite d’équation
y =z (en noir).

1.5

0.5

-05

Partie 6 : A propos de sa réciproque

On admet qu’il existe des coefficients réels ag, a1, b1, bo tels que :

by b 1
fHz) = a1x+a0+1+22—|—o<)
r  x

r—r—400 $2
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22.

f() — —1—|—1—|—o(1) — (1_1+ (1)>
Y Tt T 3z T 528 4o \zt) ztee " 322 O\ 2
1
= 2(1+0(1)).
r—+00 xT

Par conséquent, on a 1’égalité asymptotique entre fonctions suivantes :

1 1 1

f(a:) :c—)z-i-oo E 1+o (%) '
1 _ _ 1 _ 1 7 o2
Or, —— o 14w+ o(u). Posons u =0 (z)-Onaalorso(u) = o(=).Donc, on a les égalités

T 1tu —+o0 x—>+00
asymptotiques entre fonctions suivantes :

f(lx) e i (1 o (1> o (1» 2—rtoo % o (i) -

Pour tout z € R, on pose y = f(x). D’apres la question on sait que f(x) Nt et que donc
Tr—r+00

notamment y = f(x) —+> +o00. Ainsi, on a les égalités asymptotiques entre fonctions suivantes :
T—>+00

_ _ b b 1
o= 1) = 1), 5wt at 2o ()

b1 by 1
ortoo W TR Ty T Tz O <f(fv)2> '

! 1o (;12) dont on déduit également que +- L to0(%) et

f(z) a:—>:+oo €z f(2)? x—>:+oo 2 z

o(1ke) , 7o) Db

e (o) v (el o)
xw%—Jrooal(a; ap = Oﬁ 2\ 2 OP 0?.
En utilisant la question |13.| on obtient alors
(o= 5o rol@)) rar T+ +o(2)
r = alr——+ol|l— a+—+—5+ol|l—=
ootoo T 3z x? 0T T a2 2

_ fg, brzB8a b (i)
srtoo (1T T GO 3x 22 TO\F2 )

Or nous avons vu que

Autrement dit

b1 — b 1
(al—l)x+a0—173a1 2 (

3z +ﬁ+0 :1:2> IH:JrooO.

ce qui n’est possible que si a3 — 1 = ag = by — 3a; = by = 0 (sinon on obtient 0 équivalent & un terme
non nul ce que l'on sait faux bien entendu). Par conséquent

lap=0, ar=1, bi=30=3  b=0]

On conclut que

19/21



C
o
e s Ko Mathématiques PTSI, DS5 Cor Vendredi 30 Janvier 2026

23. On retrouve bien d’une part que % 3 1 admet la droite y = x pour asymptote oblique en +oo (et donc
en —oo par imparité, question . D’autre part puisque

3

fla)—o ~ =

r—+00 T ’

et que % > 0 si et seulement si > 0, on retrouve également le fait que & 3 Lest asymptotiquement
au-dessus de la droite y = x en 400 et asymptotiquement en-dessous de la droite y = x en —oo.

24. (i) Ona s =23 = o)et f(x) ~ =z Donc? = o (f~'(z)) et donc

& T z—+o0 T—+00 T x—+4oo

b
f1(x) n’est pas équivalent & e quand z tend vers +oo.
T

(ii) De la question ’ﬁ‘ et du fait que o (m%) < 3 <« 1z =ax, on en déduit directement que

z—+oo T z—+oo
fHz) ~ az|

T—r—+00
. 502 £ 1 5062 1 >
(iii) Puisque —* < a1z = z, on en déduit que |a1z + =2 ayx ~ 7 (x)]| d'apres le
T o T T r—+oo T—400
point (7).

Partie 7 : Asymptote de ¢

On consideére la fonction g définie sur son ensemble de définition &, par I’expression :

g(z) =z <f(x))x

T

f(=z)
25. Par définition, pour tout z € %y, g(x) = ze” (45 ) Soit x € R, on a alors les équivalences suivantes :
T € .@f
x>0 z <0
T € Yy & x#0 < ou
i@ < f(z) >0 f(z) <0

Tz
Or pour tout > 0, f(z) > 0 et pour tout z < 0, f(x) < 0 d’apres la question On en déduit donc

26. D’apres la question 2, on a

Par conséquent,

g(x) = werilearean(2))  _ p getaa(2-gyo()))
T—>+00

T—+00

- __1 1 = L =
Posons u b TEETO (z2) e 0 alors o(u) oo © (z£). Or In (1 +u) Sout o(u). Donc
g(l’) = xex(—ﬁ—&-o(ﬁ)) = xe_i“l‘O(%) .
T——+00 T—r+00
. 1 1 ~ , _ 1
Posons v M 5; T 0 (z) xjoo 0. De méme que précédemment, on a o(v) e 0 (x) De plus

e’ = 1+ v+ o(v). Donc,
v—0

1 1 1
g(x) QH:JrOOa:<1—3x+0<x>) QH:Jrooa:—g—i-o(l).

On en déduit que ¢ possede une asymptote oblique en +o0o d’équation y = = —
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27. Soit z €]0; 00|, par définition de f, on a

1 1
(E) & 4x ((21‘)2 arctan (2x)> + 9z <(3$)2 arctan(?):c)) = i;
o Larctan (20) + L arctan(3z) =
—arctan (2z) + — arctan(3z) = —
T T 4z

(E) & arctan (2z) + arctan(3z) =

car x # 0.

m
4

28. Soit & €]0; 4-00[, puisque 7 € ]—g; 5 [, on peut composer I'équation (E) par la fonction tangente :

(B) o {tan (arctan(2x) + arctan(3z)) = tan (7)
arctan(2z) + arctan(3z) € [0; 5.

Pour tout z €]0; 4+o00[, on a arctan(2z) € ]O; %[ et arctan(3zx) € ]O; %[, donc on peut utiliser la formule

tan(a + b) = % et le fait que tan (arctan(u)) = u pour tout v € R, on en déduit que

1—tan(arctan(2z)) tan(arctan(3z))
arctan(2z) + arctan(3z) € [0;

2x4+3x __ 1
= 1-622 —

arctan(2x) + arctan(3z) € [0; 5|

tan(arctan(2x))+tan(arctan(3z))
(E) =

[CIE

[

5z =1— 622
& 1-622#0
arctan(2z) + arctan(3z) € [0; g[
622 +5r —1=0
A z? + %.
arctan(2x) + arctan(3z) € [0; g[

Soit A le discriminant associé a 622 + 5z — 1, on a
A=25+26=49="7>>0.

Alors les racines sont
—-5—-7 1 ou 547 1
xr = = — €T = = —,
12 12 6
Puisque z > 0, il va de soi que  # —1. Donc = % est 'unique racine possible. Dans ce cas, on a bien
1’ # L et2r =1 < % ainsi que 3z = § < 1 Par conséquent, on a bien 0 < arctan(2z)+arctan(3z) <

™ ™ s 3
& T 1 < 5. Conclusion,

1
T=g est 'unique solution de (F).
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