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Correction de l’interrogation 13
Matrices

1. (a) Enoncer la proposition reliant l’équivalence et la négligeabilité entre deux fonctions.
Solution. Soient a ∈ R, I un voisinage de a, f et g ∈ F (I,K). Alors

f(x) ∼
x→a

g(x) ⇔ f(x) =
x→a

g(x) + o (g(x)) .

(b) Si deux fonctions sont équivalentes, que dire de leur comportement asymptotique ?
Solution. Soient a ∈ R, I un voisinage de a, f et g ∈ F (I,K).

i. Si f(x) ∼
x→a

g(x) alors f et g ont le même comportement en a : si f converge, g aussi et si f diverge,
g aussi. De plus dans tous les cas f et g ont le même signe au voisinage de a.

ii. Soit ℓ ∈ R∗. On a
lim
x→a

f(x) = ℓ ⇔ f(x) ∼
x→a

ℓ.

(c) Enoncer la proposition reliant les coefficients d’un trinôme à ses racines.
Solution. Soient (a, b, c) ∈ C∗×C2 et z1 et z2 les deux racines (éventuellement confondues) de az2 + bz + c.
Alors,

z1 + z2 = − b

a
et z1z2 = c

a
.

2. Soient n ∈ N∗, A =
((

n
i

))
1⩽i,j⩽n

∈Mn (R) et B =
(
3i2−j

)
1⩽i,j⩽n

∈Mn (R). Calculer pour tout (i, j) ∈ J1 ; nK2,
le coefficient cij de la matrice AB.
Solution. On a pour tout (i, j) ∈ J1 ; nK,

cij =
n∑

k=1
ai,kbk,j =

n∑
k=1

Ç
n

i

å
︸ ︷︷ ︸

indépendant de k

3k2−j = 1
2j

Ç
n

i

å n∑
k=1

3k.

On reconnait une somme géométrique de raison 3 ̸= 1 et non un binôme de Newton, ouuuuuu le vilain piège
vicieux ! Donc

cij = 1
2j

Ç
n

i

å
33n − 1

3− 1 =
Ç

n

i

å
3 (3n − 1)

2j+1 .

Conclusion,

∀ (i, j) ∈ J1 ; nK2, cij =
Ç

n

i

å
3 (3n − 1)

2j+1 .

3. On pose A =
Å

4 3
−3 −2

ã
. A l’aide de B = A− I2, calculer pour tout p ∈ N, Ap.

Solution. On a B =
Å

3 3
−3 −3

ã
= 3
Å

1 1
−1 −1

ã
. Donc

B2 = 9
Å

1 1
−1 −1

ã
×
Å

1 1
−1 −1

ã
= 02.

Donc pour tout k ∈ N, k ⩾ 2, Bk = 02. De plus, B et I2 commutent. Donc, par la formule du binôme de
Newton, pour tout p ∈ N, p ⩾ 1,

Ap = (I2 + B)p =
p∑

k=0

Ç
k

p

å
BkIp−k

2 = I2 + pB + 02.

Cette formule reste vraie si p = 0. Conclusion,

∀p ∈ N, Ap =
Å

1 + 3p 3p
−3p 1− 3p

ã
.
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4. Déterminer si P =

Ñ
2 −2 1
1 −1 1
1 −2 2

é
est inversible ou non et si P est inversible, calculer son inverse.

Solution. En appliquant l’algorithme de Gauss-Jordan, on a les opérations élémentaires suivantes :

P =

Ñ
2 −2 1
1 −1 1
1 −2 2

é
I3 =

Ñ
1 0 0
0 1 0
0 0 1

é
∼
L

Ñ
1 −1 1
2 −2 1
1 −2 2

é
L1 ↔ L2 ∼

L

Ñ
0 1 0
1 0 0
0 0 1

é
∼
L

Ñ
1 −1 1
0 0 −1
0 −1 1

é
L2 ← L2 − 2L1
L3 ← L3 − L1

∼
L

Ñ
0 1 0
1 −2 0
0 −1 1

é
∼
L

Ñ
1 −1 1
0 −1 1
0 0 −1

é
L3 ↔ L3 ∼

L

Ñ
0 1 0
0 −1 1
1 −2 0

é
Ainsi,

P ∼
L

Ñ
1 −1 0
0 −1 0
0 0 −1

é
L1 ← L1 + L3
L2 ← L2 + L3

I3 ∼
L

Ñ
1 −1 0
1 −3 1
1 −2 0

é
∼
L

Ñ
1 −1 0
0 1 0
0 0 1

é
L1 ← −L1
L2 ← −L2

∼
L

Ñ
1 −1 0
−1 3 −1
−1 2 0

é
∼
L

Ñ
1 0 0
0 1 0
0 0 1

é
L1 ← L1 + L2 ∼

L

Ñ
0 2 −1
−1 3 −1
−1 2 0

é
.

Puisque P ∼
L

I3, on en déduit que P est inversible . De plus,

P −1 =

Ñ
0 2 −1
−1 3 −1
−1 2 0

é
.

On pense à vérifier son résultat que PP −1 = I3 !
5. Déterminer un équivalent simple quand n→ +∞ de un = ln2 (1 + 1

n + 1
n2

)
+

√
n2+n

n − 1.
Solution. On sait que ln (1 + u) ∼

u→0
u. Posons u = 1

n + 1
n2 . Alors, on a bien u −→

n→+∞
0. D’où,

ln
Å

1 + 1
n

+ 1
n2

ã
∼

n→+∞

1
n

+ 1
n2 ∼

n→+∞

1
n

.

Par élévation au carré :
ln2
Å

1 + 1
n

+ 1
n2

ã
∼

n→+∞

1
n2 .

D’autre part, pour tout n > 0, √
n2 + n

n
− 1 =

…
1 + 1

n
− 1.

Or
√

1 + u− 1 ∼
u→0

1
2 u. En posant u = 1

n −→
n→+∞

0, on obtient bien que

√
n2 + n

n
− 1 ∼

n→+∞

1
2n

.

Or 1
n2 ≪

n→+∞
1

2n . Donc

ln
Å

1 + 1
n

+ 1
n2

ã
≪

n→+∞

√
n2 + n

n
− 1.
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Ainsi,

un ∼
n→+∞

√
n2 + n

n
− 1 ∼

n→+∞

1
2n

.

Conclusion,

un ∼
n→+∞

1
2n

.
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