

Réponses de l'interrogation 08 Equations complexes

1. (a) Enoncer la proposition reliant les coefficients d'un trinôme à ses racines. Solution. Soient $(a,b,c) \in \mathbb{C}^* \times \mathbb{C}^2$ et z_1 et z_2 les deux racines (éventuellement confondues) de $az^2 + bz + c$. Alors.

$$z_1 + z_2 = -\frac{b}{a}$$
 et $z_1 z_2 = \frac{c}{a}$.

(b) Définir j. Que vaut j^2 ? j^3 ? $1 + j + j^2$? Solution. On a $j = e^{i\frac{2\pi}{3}}$. De plus,

$$j^2 = \overline{j},$$
 $j^3 = 1$ et $1 + j + j^2 = 0.$

- (c) Enoncer le théorème de dérivabilité de la fonction réciproque. Solution. Soient I un **intervalle** de \mathbb{R} , $f \in \mathscr{F}(I,\mathbb{R})$. Si
 - f est dérivable sur I,
 - strictement monotone sur I,
 - et $\forall x \in I, f'(x) \neq 0$,

alors f^{-1} existe, est dérivable sur J = f(I) et

$$\forall x \in J, \qquad (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

2. Résoudre dans \mathbb{C} , $z^2 = -7 - 24i$. Solution. Conclusion, l'ensemble solution est

$$\mathscr{S} = \{3 - 4i; -3 + 4i\}.$$

Vérification: $(3-4i)^2 = 9-24i-16 = -7-24i$ OK!

3. Résoudre dans \mathbb{C} l'équation $(G): (z-2)^5 - z^5 = 0$. Solution. Conclusion, l'ensemble des solutions de (G) est donné par

$$\mathscr{S}_{(G)} = \left\{ \frac{i e^{-i\frac{k\pi}{5}}}{\sin\left(\frac{k\pi}{5}\right)} \mid k \in [1; 4] \right\}.$$

4. Résoudre dans \mathbb{C} , $z^2 - (1 - i\sqrt{3})z - 1 = 0$. Solution. Conclusion, l'ensemble solution est

$$\mathscr{S} = \left\{ \frac{1+\sqrt{3}}{2} (1-i); \frac{1-\sqrt{3}}{2} (1+i) \right\}.$$

5. Soit $f: z \mapsto (-1+i)z + 8i - 1$. A quelle transformation du plan correspond f?

Solution. Conclusion, f est une similitude de centre $\omega = 3i - 2$, d'angle $\theta = \frac{3\pi}{4}$ et de coefficient homothétique $k = \sqrt{2}$.