

Interrogation 1 d'entrainement Logique et raisonnement

1. Restituer le cours.

- 1.1 Enoncer les lois de Morgan.
- 1.2 Définir logiquement une implication.
- 1.3 Enoncer la réciproque, la contraposée et la négation d'une implication.

Manipuler les implications et équivalences. Compléter avec les symboles \Rightarrow , \Leftarrow , \Leftrightarrow ou \times (lorsqu'aucun des précédents symboles ne fonctionne) les phrases suivantes. Soient $(x,a) \in \mathbb{R}^2$, $(y,b) \in (\mathbb{R}^*)^2$, $z \in \mathbb{C}$, $f \in \mathscr{F}(\mathbb{R},\mathbb{R})$, $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ (i.e. $(u_n)_{n \in \mathbb{N}}$ est une suite réelle)

1.4	$\cos(x) = 0$	 $\exists k \in \mathbb{Z}, \ x = \frac{\pi}{2} + 2k\pi.$
1.5	$e^x \geqslant 1$	 $x \geqslant 0.$
1.6	$z\in\mathbb{R}$	 $\operatorname{Re}\left(z\right) =z.$
1.7		$\cos(x) = \cos(y).$
1.8	$\frac{a}{b} = \frac{x}{y}$	 $\begin{cases} a = x \\ b = y \end{cases}.$
1.9	$\ln(x) \geqslant 0$	 x > 1.
1.10	$(u_n)_{n\in\mathbb{N}}$ est croissante	 $u_{25} > u_{20}.$
1.11	$x\geqslant \frac{\pi}{2}$	 $\cos(x) \leqslant 0.$
1.12	$x^2 \geqslant 25$	 $x \geqslant 5$.
1.13	$\exists A \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = A$	 $\forall x \in \mathbb{R}, \ \exists B \in \mathbb{R}, \ f(x) > B.$

2. Réciproque/contraposée/négation.

2.1 Soient $(x,y) \in \mathbb{R}^2$. Enoncer la réciproque, la contraposée et la négation de l'implication suivante :

$$\frac{x-y}{2\pi} \in \mathbb{Z} \quad \Rightarrow \quad \cos(x) = \cos(y).$$

2.2 Soit $f \in \mathscr{F}(\mathbb{R}, \mathbb{R})$. Enoncer la réciproque, la contraposée et la négation de l'implication suivante :

 $[(f \text{ est croissante sur } \mathbb{R}) \text{ ET } (f \text{ est majorée sur } \mathbb{R})]$

$$\Rightarrow \left[\lim_{x\to+\infty} f(x) \text{ existe dans } \mathbb{R}.\right]$$

2.3 Soient $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ (une suite à valeurs dans \mathbb{R}). Enoncer la réciproque, la contraposée et la négation de l'implication suivante :

$$(u_n)_{n\in\mathbb{N}}$$
 converge $\Rightarrow \exists (m,M)\in\mathbb{R}^2, \forall n\in\mathbb{N}, m\leqslant u_n\leqslant M.$

2.4 Soit $f \in \mathscr{F}(\mathbb{R}, \mathbb{R})$ admettant une limite en $+\infty$ et soit $a \in \mathbb{R}$. Enoncer la réciproque, la contraposée et la négation de l'implication suivante :

$$\forall x \in \mathbb{R}, \ f(x) > a \quad \Rightarrow \quad \lim_{x \to +\infty} f(x) \geqslant a.$$

2.5 Soient $f \in \mathscr{F}(\mathbb{R}, \mathbb{R})$. Enoncer la réciproque, la contraposée et la négation de l'implication suivante :

$$\left[\forall (x,y) \in \mathbb{R}^2, \ (x < y \ \Rightarrow \ f(x) < f(y)) \right]$$

$$\Rightarrow \quad \left[\forall (x,y) \in \mathbb{R}^2, \ (f(x) = f(y) \ \Rightarrow \ x = y) \right].$$

3. Quantificateurs.

- 3.1 Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ (une suite à valeurs dans \mathbb{R}). Ecrire avec un ou des quantificateurs le fait que $(u_n)_{n \in \mathbb{N}}$ soit monotone puis sa négation.
- 3.2 Soit $f \in \mathscr{F}(\mathbb{R}, \mathbb{R})$. Ecrire avec un ou des quantificateurs le fait que f est croissante sur \mathbb{R}_+ et strictement décroissante sur \mathbb{R}_- puis sa négation.
- 3.3 Ecrire avec un ou des quantificateurs le fait que π soit irrationnel puis sa négation.
- 3.4 Soit $\mathscr E$ un ensemble de fonctions de $\mathbb R$ dans $\mathbb R$. Ecrire avec un ou des quantificateurs le fait que toutes les fonctions de $\mathscr E$ sont positives sur $\mathbb R$ puis sa négation.
- 3.5 Soit $f \in \mathscr{F}(\mathbb{R}, \mathbb{R})$. Ecrire avec un ou des quantificateurs le fait que f ne prenne que des valeurs entières puis sa négation.

4. Récurrence.

- 4.1 Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, $1+2+3+\cdots+n=\frac{n(n+1)}{2}$.
- 4.2 Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
- 4.3 Soit $x \in \mathbb{R} \setminus \{1\}$. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $1 + x + x^2 + \dots + x^n = \frac{1 x^{n+1}}{1 x}$.
- 4.4 Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ la suite définie par $u_0=0$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=5u_n+2$. Montrer par récurrence que pour tout $n\in\mathbb{N}$, $u_n=\frac{5^n-1}{2}$.
- 4.5 Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ la suite définie par $u_0=0,\ u_1=6$ et pour tout $n\in\mathbb{N},\ u_{n+2}=2u_{n+1}+8u_n$. Montrer par récurrence que pour tout $n\in\mathbb{N},\ u_n=4^n-(-2)^n$.
- 4.6 Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ la suite définie par $u_0=1$ et pour tout $n\in\mathbb{N},$ $u_{n+1}=\frac{u_0^2+u_1^2+\cdots+u_n^2}{n+1}$. Pour tout $n\in\mathbb{N},$ conjecturer une expression simple de u_n puis le démontrer rigoureusement.

5. Calcul dans \mathbb{R} .

- 5.1 Déterminer l'ensemble des $x \in \mathbb{R}$ tels que $\sqrt{x^2 1} = x + 2$.
- 5.2 Déterminer l'ensemble des $x \in \mathbb{R}$ tels que $\sqrt{x-1} = \sqrt{2x+1}$.
- 5.3 Déterminer l'ensemble des $x \in \mathbb{R}$ tels que $\sqrt{x+5} = \sqrt{2x+2}$.
- 5.4 Déterminer l'ensemble des $x \in \mathbb{R}$ tels que $\sqrt{2x^2 x 3} = x + 1$.
- 5.5 Déterminer l'ensemble des $x \in \mathbb{R}$ tels que $x = -1 + \sqrt{x^2 2}$.