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Correction de l’interrogation 14
d’entrainement

Analyse Asymptotique

1. Restituer le cours.
1.1 Sur les équivalents, il est possible de

• multiplier,
• d’élever à la puissance (éventuellement négative et donc de passer à l’inverse),
• de passer à la valeur absolue,
• de faire un changement de variable.

Il est cependant interdit
• de sommer des équivalents,
• de composer des équivalents par une fonction,
• d’écrire équivalent à 0.

1.2 Soient a ∈ R, I un voisinage de a et (f, g, h) ∈ F (I,R)3 tels que

∀x ∈ I, f(x) ⩽ g(x) ⩽ h(x) et f(x) ∼
x→a

h(x).

Alors, par le théorème d’encadrement des équivalents,

f(x) ∼
x→a

g(x) ∼
x→a

h(x).

1.3 Soient I un voisinage de 0 et f ∈ F (I,K).
i. f est continue en 0 si et seulement si f admet un développement limité à l’ordre 0 en 0. Dans ce cas

f(x) =
x→0

f(0) + o (1).

ii. f est dérivable en 0 si et seulement si f admet un développement limité à l’ordre 1 en 0. Dans ce case,
f(x) =

x→0
f(0) + f ′(0)x + o (x).

iii. SI f est C n ALORS f admet un développement limité à l’ordre n.
1.4 Soient n ∈ N, (a0, . . . , an) ∈ Kn+1 et (b0, . . . , bn) ∈ Kn+1 tels que

n∑
k=0

akxk + o (xn) =
x→0

n∑
k=0

bkxk + o (xn) .

Alors, pour tout k ∈ J0 ; nK, ak = bk.
1.5 Soient I un voisinage de 0 et f ∈ F (I,K). Soit n ∈ N. On suppose que f admet un développement limité

à l’ordre n en 0 donné par

f(x) =
x→0

n∑
k=0

akxk + o (xn) , (ak)k∈J0 ; nK ∈ Kn+1.

Soit F une primitive de f sur I alors F admet un développement limité à l’ordre n + 1 en 0 donné par

F (x) =
x→0

F (0) +
n∑

k=0
ak

xk+1

k + 1 + o
(
xn+1) .

1.6 Soit a ∈ R, I un voisinage de a et f ∈ F (I,K). Si f est de classe C n en a alors f admet un développement
limité à l’ordre n en a donné par

f(x) =
x→a

n∑
k=0

f (k)(a)
k! (x − a)k + o ((x − a)n) .
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1.7 Bande de naïfs !
2. Calculer un développement limité.

2.1 On sait que

ex =
x→0

1 + x + x2

2 + x3

6 + o
(
x3)

et

1√
1 + x

= (1 + x)−1/2 =
x→0

1 − 1
2x + (−1/2)(−3/2)x2

2 + (−1/2)(−3/2)(−5/2)x3

6 + o
(
x2)

=
x→0

1 − x

2 + 3x2

8 − 15x3

48 + o
(
x3) .

Par conséquent,

f(x) = ex −1√
1 + x

=
x→0

Å
x + x2

2 + x3

6 + o
(
x3)ãÅ1 − x

2 + 3x2

8 − 15x3

48 + o
(
x3)ã

=
x→0

x − x2

2 + 3x3

8 +o
(
x3)

+ x2

2 − x3

4 +o
(
x3)

+ x3

6 +o
(
x3)

+o
(
x3)

=
x→0

x +
Å 9

24 − 6
24 + 4

24

ã
x3 + o

(
x3) .

Conclusion,

f(x) =
x→0

x + 7x3

24 + o
(
x3) .

NB : en anticipant l’ordre, nous aurions pu faire un développement limité à l’ordre 2 de 1√
1+x

car tous ces
termes seront ensuite multipliés par au moins x.

2.2 On a les égalités asymptotiques suivantes :

f(x) = (ch(x) − cos(x)) (sh(x) − sin(x))

=
x→0

ï
1 + x2

2 + x4

24 + x6

720 + o
(
x6) −

Å
1 − x2

2 + x4

24 − x6

720 + o
(
x6)ãò

×
ï
x + x3

6 + x5

120 + o
(
x6) −

Å
x − x3

6 + x5

120 + o
(
x6)ãò

=
x→0

Å
x2 + x6

360 + o
(
x6)ãÅx3

3 + o
(
x6)ã

=
x→0

x5

3 +o
(
x6)

+o
(
x6)

=
x→0

x5

3 + o
(
x6) .

Conclusion,

f(x) =
x→0

x5

3 + o
(
x6) .

2.3 Pour tout x ∈ R∗
+, posons u = 1

x i.e. x = 1
u et g(u) = f

( 1
u

)
= f(x). Alors

∀u > 0, g(u) = f(x) = e− 1
x

2 + x
= e−u

2 + 1
u

= u e−u

1 + 2u
.

De plus u →
x→+∞

0. Or on sait que ev =
v→0

1 + v + v2

2 + v3

6 + v4

24 + o
(
v4). Donc en prenant v = −u → 0, on a

e−u =
u→0

1 − u + u2

2 − u3

6 + u4

24 + o
(
u4) .
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D’autre part, on a 1
1+v =

v→0
1 − v + v2 − v3 + v4 + o

(
v4). Donc en prenant v = 2u → 0, on a aussi

1
1 + 2u

=
u→0

1 − 2u + 4u2 − 8u3 + 16u4 + o
(
u4) .

Par conséquent,

g(u) =
u→0

u

Å
1 − u + u2

2 − u3

6 + u4

24 + o
(
u4)ã (1 − 2u + 4u2 − 8u3 + 16u4 + o

(
u4))

=
u→0

Å
u − u2 + u3

2 − u4

6 + o
(
u4)ã (1 − 2u + 4u2 − 8u3 + 16u4 + o

(
u4))

=
u→0

u −2u2 +4u3 −8u4 +o
(
u4)

−u2 +2u3 −4u4 +o
(
u4)

+ u3

2 −u4 +o
(
u4)

− u4

6 +o
(
u4)

+o
(
u4)

=
u→0

u − 3u2 + 13u3

2 − 13 × 6 + 1
6 u4 + o

(
u4)

=
u→0

u − 3u2 + 13u3

2 − 79
6 u4 + o

(
u4) .

Conclusion,

f(x) =
x→+∞

1
x

− 3
x2 + 13

2x3 − 79
6x4 + o

Å 1
x4

ã
.

NB : ce n’est pas un vrai développement limité car les puissances de x sont négatives ici, on parle plutôt
de développement asymptotique dans ce cas.
NB2 : En anticipant l’ordre nous aurions pu partir d’un développement limité à l’ordre 3 seulement de e−u

et de 1
1+2u car tous ces termes seront ensuite multipliés par u.

2.4 Posons x = π
4 + h i.e. h = x − π

4 et g (h) = f (x) = f
Ä

pi
4 + h

ä
. Alors pour tout h ∈ R,

g(h) = f
(π

4 + h
)

= e π
4 +h cos

(π

4 + h
)

= e π
4 eh

[
cos

(π

4

)
cos(h) − sin

(π

4

)
sin(h)

]
= e π

4

√
2

2 eh (cos(h) − sin(h)) .

Or on sait que

eh =
h→0

1 + h + h2

2 + o
(
h2)

cos(h) =
h→0

1 − h2

2 + o
(
h2)

sin(h) =
h→0

h + o
(
h2) .

Par conséquent,

g (h) =
h→0

e π
4

√
2

2

Å
1 + h + h2

2 + o
(
h2)ãÅ1 − h2

2 + o
(
h2) − h + o

(
h2)ã

=
h→0

e π
4

√
2

2

Å
1 + h + h2

2 + o
(
h2)ãÅ1 − h − h2

2 + o
(
h2)ã

=
h→0

e π
4

√
2

2 [1 −h − h2

2 +o
(
h2)

+h −h2 +o
(
h2)

+ h2

2 +o
(
h2)

+o
(
h2)]

=
h→0

e π
4

√
2

2
(
1 − h2 + o

(
h2)) .

3/11



Mathématiques PTSI, IntEnt14 Cor 2025-2026

Conclusion,

f (x) =
x→ π

4

e π
4

√
2

2 + e π
4

√
2

2

(
x − π

4

)2
+ o

Å(
x − π

4

)2ã
.

2.5 On sait que

cos(x) =
x→0

1 − x2

2 + o
(
x3)

1
(1 + x)2 = (1 + x)−2 =

x→0
1 − 2x + (−2) (−3) x2

2 + (−2) (−3) (−4) x3

6 + o
(
x3)

=
x→0

1 − 2x + 3x2 − 4x3 + o
(
x3) .

Par conséquent,

f(x) =
x→0

Å
1 − x2

2 + o
(
x3) − 1

ã (
1 − 2x + 3x2 − 4x3 + o

(
x3))

=
x→0

Å
−x2

2 + o
(
x3)ã (1 − 2x + 3x2 − 4x3 + o

(
x3))

=
x→0

− x2

2 + x3 +o
(
x3)

+o
(
x3)

=
x→0

−x2

2 + x3 + o
(
x3) .

Conclusion,

f(x) =
x→0

−x2

2 + x3 + o
(
x3) .

NB : on aurait pu à nouveau anticiper l’ordre et ne prendre le développement limité de 1
(1+x)2 à l’ordre 1

uniquement.
3. Manipuler un développement usuel.

3.1 Soit n ∈ N. Pour tout x ∈ R, on pose h = x − 5 i.e. x = 5 + h et g (h) = f (x) = f (5 + h). Alors

∀h ∈ R, g (h) = f (5 + h) = e2(5+h) = e10 e2h .

Or on sait que

eu =
u→0

n∑
k=0

uk

k! + o (un) .

Donc en prenant u = 2h → 0, on a

e2h =
h→0

n∑
k=0

2khk

k! + o (hn) .

Ainsi,

g (h) =
h→0

n∑
k=0

e10 2khk

k! + o (hn) .

Conclusion,

f(x) =
x→5

n∑
k=0

e10 2k (x − 5)k

k! + o ((x − 5)n) .

3.2 Soit n ∈ N. Pour tout x ∈ R, on a
f(x) = sin (2x)

2x
.

Or

sin (u) =
u→0

n∑
k=0

(−1)k
u2k+1

(2k + 1)! + o
(
u2n+2) .
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Ainsi, en posant u = 2x → 0, on a

f(x) =
x→0

∑n
k=0

(−1)k22k+1x2k+1

(2k+1)! + o
(
x2n+2)

2x

=
x→0

n∑
k=0

(−1)k 22kx2k

(2k + 1)! + o
(
x2n+1) .

Conclusion,

f(x) =
x→0

n∑
k=0

(−1)k 4kx2k

(2k + 1)! + o
(
x2n+1) .

3.3 Soit n ∈ N. On a pour tout x ∈ R∗
+,

arctan (x) = π

2 − arctan
Å 1

x

ã
.

Posons t = 1
x i.e. x = 1

t et g (t) = f (x) = f
( 1

t

)
. Alors

∀t > 0, g (t) = f

Å1
t

ã
= π

2 − arctan (t) .

Or, on sait que

arctan (t) =
t→0

n∑
k=0

(−1)k
t2k+1

2k + 1 + o
(
t2n+1) .

Ainsi,

g (t) =
t→0

π

2 −
n∑

k=0

(−1)k
t2k+1

2k + 1 + o
(
t2n+1) =

t→0

π

2 +
n∑

k=0

(−1)k+1
t2k+1

2k + 1 + o
(
t2n+1) .

Conclusion,

f(x) =
x→+∞

π

2 +
n∑

k=0

(−1)k+1

(2k + 1) x2k+1 + o

Å 1
x2n+1

ã
.

3.4 Soit n ∈ N. On sait que

sh (u) =
u→0

n∑
k=0

u2k+1

(2k + 1)! + o
(
u2n+1) .

Donc en prenant u = x3/2 → 0, on obtient que

f(x) =
x→0

∑n
k=0

x3k+ 3
2

(2k+1)! + o
Ä
x3n+ 3

2
ä

√
x

=
x→0

n∑
k=0

x3k+1

(2k + 1)! + o
(
x3n+1) .

Conclusion, en tronquant à l’ordre 3n,

f(x) =
x→0

n−1∑
k=0

x3k+1

(2k + 1)! + o
(
x3n

)
.

Déterminer un développement limité à l’ordre 3n en 0 de f : x 7→ sh(x3/2)√
x

.
3.5 Soit n ∈ N, n ⩾ 2. On a

ln (1 + u) =
u→0

n∑
k=1

(−1)k+1
uk

k
+ o (un) .

Donc en posant u = 3x → 0, on obtient

f(x) = ln (1 + 3x) − 3x =
x→0

n∑
k=1

(−1)k+1 3kxk

k
+ o (xn) − 3x

=
x→0

n∑
k=2

(−1)k+1 3kxk

k
+ o (xn) .
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Conclusion,

f(x) =
x→0

n∑
k=2

(−1)k+1 3kxk

k
+ o (xn) .

4. Primitivation, dérivation, Taylor.
4.1 Soit f : x 7→ 1√

1−x2 .
• La fonction f admet le développement limité d’ordre 4 en 0 suivant :

f(x) =
x→0

1 + (−1/2)
(
−x2) + (−1/2) (−3/2)

(
−x2)2

2 + o
(
x4) =

x→0
1 + x2

2 + 3x4

8 + o
(
x4)

• La fonction arcsin est une primitive de f sur I.
Alors par le théorème de primitivation des développements limités, on en déduit que arcsin admet un
développement limité d’ordre 5 donné par

arcsin (x) =
x→0

arcsin(0)
↑

important !

+ x + x3

6 + 3x5

40 + o
(
x5) .

Conclusion,

arcsin (x) =
x→0

x + x3

6 + 3x5

40 + o
(
x5) .

4.2 Soient n ∈ N et f : x 7→ 1
(1−x)2 . Puisque la fonction f est de classe C n+1 sur I = ]−∞ ; −1[, par le théorème

de Taylor-Young, on sait que f admet un développement limité d’ordre n :

∃ (a0, a1, . . . , an) ∈ Rn+1, f(x) =
x→0

n∑
k=0

akxk + o (xn) .

Posons g : x 7→ 1
1−x . On observe que la fonction g est dérivable sur I et

∀a ∈ I, g′(x) = − −1
(1 − x)2 = 1

(1 − x)2 = f(x).

Donc g est une primitive de f . Donc par le théorème de primitivation des développements limités, on trouve
que

g(x) =
x→0

g(0) +
n∑

k=0

akxk+1

k + 1 + o
(
xn+1) =

x→0
g(0) +

n+1∑
k=1

ak−1xk

k
+ o

(
xn+1)

D’autre part, on sait que

g(x) =
x→0

1 + x + x2 + · · · + xn+1 + o
(
xn+1) =

x→0

n+1∑
k=0

xk + o
(
xn+1) .

Donc par unicité des développements limités :®
g(0) = 1 OK.
∀k ∈ J1; n + 1K, ak−1

k = 1
⇔ ∀k ∈ J0; nK, ak = k + 1.

Conclusion,

f(x) =
x→0

n∑
k=0

(k + 1) xk + o (xn) .

4.3 Soit n ∈ N. La fonction ch est C 2n sur I = R, voisinage de 1. Donc d’après le théorème de Taylor-Young,
on a

ch(x) =
x→1

2n∑
k=0

ch(k)(1)
k! (x − 1)k + o

(
(x − 1)2n

)
.
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Or on sait que pour tout k ∈ N, k pair, on a ch(k) = ch tandis que pour tout k ∈ N, k impair, on a
ch(k) = sh. Séparons donc dans la somme les termes pairs et les termes impairs :

ch(x) =
x→1

n∑
k=0

ch(2k)(1)
(2k)! (x − 1)2k +

n−1∑
k=0

ch(2k+1)(1)
(2k + 1)! (x − 1)2k+1 + o

(
(x − 1)2n

)
.

Ainsi,

ch(x) =
x→1

n∑
k=0

ch(1)
(2k)! (x − 1)2k +

n−1∑
k=0

sh(1)
(2k + 1)! (x − 1)2k+1 + o

(
(x − 1)2n

)
.

4.4 Soit f : t 7→ (1 + t) ln (1 + t) − t. La fonction f est définie et même dérivable sur I = ]−1 ; +∞[, voisinage
de 0 et

∀x ∈ I, f ′(x) = ln (1 + t) + 1 + t

1 + t
− 1 = ln (1 + t) .

Posons g : t 7→ ln (1 + t). Alors
• La fonction g admet un développement limité à l’ordre 5 en 0 donné par

g(t) =
t→0

t − t2

2 + t3

3 − t4

4 + t5

5 + o
(
t5) .

• La fonction f est une primitive de g sur I.
Donc d’après le théorème de primitivation des développements limités, la fonction f admet un développe-
ment limité en 0 d’ordre 6 donné par

f(t) =
t→0

t2

2 − t3

6 + t4

12 − t5

20 + t6

30 + o
(
t6) .

4.5 Soient f : x 7→ x2 arctan(x). On a

f(x) =
x→0

x2
Å

x − x3

3 + x5

5 − x7

7 + o
(
x7)ã =

x→0
x3 − x5

3 + x7

5 − x9

7 + o
(
x9) .

Soit g : x 7→ 2x arctan(x) + x2

1+x2 . La fonction g est définie et même C 8 sur R et notamment en 0 donc par
le théorème de Taylor-Young, admet un développement limité à l’ordre 8 en 0 :

∃ (a0, . . . , a8) ∈ R9, g(x) =
x→0

8∑
k=0

akxk + o (xn) .

D’autre part, on observe que

∀x ∈ R, f ′(x) = 2x arctan(x) + x2

1 + x2 = g(x).

Donc f est une primitive de g sur R. Donc par le théorème de primitivation des développements limités,

f(x) =
x→0

f(0) + a0x + a1
x2

2 + a2
x3

3 + a3
x4

4 + a4
x5

5 + a5
x6

6 + a6
x7

7 + a7
x8

8 + a8
x9

9 + o
(
x9) .

Par unicité du développement limité, on obtient que

f(0) = 0, a0 = a1 = a3 = a5 = a7 = 0,
a2

3 = 1,
a4

5 = −1
3 ,

a6

7 = 1
5 ,

a8

9 = −1
7 .

Conclusion,

g(x) =
x→0

3x2 − 5
3x4 + 7

5x6 − 9
7x8 + o

(
x8) .
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5. Application de développement limité.
5.1 On a au voisinage de 0 :

sh(x) + sin(x) − 2x =
x→0

x + x3

6 + x5

120 + o
(
x5) + x − x3

6 + x5

120 + o
(
x5) − 2x =

x→0

x5

60 + o
(
x5) .

Par conséquent,

sh(x) + sin(x) − 2x ∼
x→0

x5

60 .

D’autre part,

x (ch(x) + cos(x) − 2) =
x→0

x

Å
1 + x2

2 + x4

24 + o
(
x4) + 1 − x2

2 + x4

24 + o
(
x4)ã

=
x→0

x

Å
x4

12 + o
(
x4)ã

=
x→0

x5

12 + o
(
x5) .

Et donc
x (ch(x) + cos(x) − 2) ∼

x→0

x5

12 .

Donc par quotient d’équivalents,

sh(x) + sin(x) − 2x

x (ch(x) + cos(x) − 2) ∼
x→0

x5

60
x5

12
= 12

60 = 2
10 = 1

5 .

Or deux équivalents ont même limite. Conclusion,

lim
x→0

sh(x) + sin(x) − 2x

x (ch(x) + cos(x) − 2) = 1
5 .

5.2 Soient a ∈ R et (un)n∈N la suite définie pour tout n ∈ N par un = n
√

n
Ä

4
√

n2 + 1 −
√

n + a
ä
. On a au

voisinage de +∞,

un =
n→+∞

n
√

n

Ç
√

n
4

…
1 + 1

n2 −
√

n

…
1 + a

n

å
=

n→+∞
n2
Ç

4

…
1 + 1

n2 −
…

1 + a

n

å
=

n→+∞
n2
Å

1 + 1
4n2 + o

Å 1
n2

ã
−
Å

1 + a

2n
+ (1/2) (−1/2)

2
a2

n2 + o

Å 1
n2

ããã
=

n→+∞
n2
Å

− a

2n
+ 2 + a2

8n2 + o

Å 1
n2

ãã
=

n→+∞
−a

2n + 2 + a2

8 + o (1) .

Donc si a ̸= 0,
un ∼

n→+∞
−a

2n ±
n→+∞

∞.

ATTENTION ! ! ! Il est vital de dire a ̸= 0 avant de préciser l’équivalent car nul n’est équivalent à la suite
nulle !
Dans ce cas la suite (un)n∈N diverge. Ainsi, pour obtenir la convergence de la suite, il faut que a = 0 et
dans ce cas

un =
n→+∞

2
8 + o (1) ⇒ un ∼

n→+∞

1
4 .

Conclusion,

(un)n∈N converge ⇔ a = 0, dans ce cas, lim
n→+∞

un = 1
4 .
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5.3 On a au voisinage de 0 :
f(x) =

(
1 − x + x2)1/x =

x→0
e

1
x ln(1−x+x2) .

Or ln (1 + u) =
u→0

u − u2

2 + u3

3 + o
(
u3). Posons u(x) =

x→0
−x + x2. Alors,

• u(x) −→
x→0

0.

• Puis
u(x)2 =

x→0
x2 − 2x3 + o

(
x3) .

• Comme u(x) ∼
x→0

−x, on a u(x)3 ∼
x→0

−x3 i.e. u(x)3 =
x→0

−x3 + o
(
x3).

• Et donc o
(
u(x)3) =

x→0
o
(
x3).

Ainsi,
ln

(
1 − x + x2) =

x→0
−x +x2

− 1
2 (x2 −2x3 +o

(
x3))

+ 1
3 (−x3 +o

(
x3))

+o
(
x3)

=
x→0

−x + x2

2 + 2x3

3 +o
(
x3) .

Donc
f(x) =

x→0
e

1
x

(
−x+ x2

2 + 2x3
3 +o(x3)

)
=

x→0
e−1+ x

2 + 2x2
3 +o(x2) =

x→0
e−1 e

x
2 + 2x2

3 +o(x2) .

Or eu =
u→0

1 + u + u2

2 + o
(
u2). Posons u(x) =

x→0
x
2 + 2x2

3 + o
(
x2). Alors,

• u(x) −→
x→0

0.

• De plus, u(x) ∼
x→0

x
2 donc u(x)2 ∼

x→0
x2

4 i.e. u(x)2 =
x→0

x2

4 + o
(
x2).

• Enfin, o
(
u(x)2) =

x→0
o
(
x2).

Ainsi,

f(x) =
x→0

e−1
Å

1 + x

2 + 2x2

3 + o
(
x2) + 1

2

Å
x2

4 + o
(
x2)ã+ o

(
x2)ã

=
x→0

e−1 +e−1

2 x + 20 e−1

24 x2 + o
(
x2) .

Donc,

f(x) =
x→0

e−1 +e−1

2 x + 5 e−1

6 x2 + o
(
x2) .

Ainsi,

la courbe représentative de f admet pour tangente en 0 la droite d’équation y = e−1 +e−1

2 x.

De plus,

f(x) −
Å

e−1 +e−1

2 x

ã
=

x→0

5 e−1

6 x2 + o
(
x2) ∼

x→0

5 e−1

6 x2 ⩾ 0.

Or deux équivalents ont même signe au voisinage du point considéré. Conclusion,

la courbe représentative de f est au-dessus de sa tangente au voisinage de 0.
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5.4 Pour tout x ∈ R∗
+ \ {1}, posons h = x − 1 i.e. x = 1 + h. Alors,

f(x) = f (1 + h) =
h→0

(1 + h)1+ 1
1+h − 1

1 + h − 1

=
h→0

e(1+ 1
1+h ) ln(1+h) −1

h

=
h→0

e(1+1−h+h2−h3+o(h3))
(

h− h2
2 + h3

3 +o(h3)
)

−1
h

=
h→0

e2h−h2+ 2h3
3 +o(h3)−h2+ h3

2 +o(h3)+h3+o(h3)+o(h3) −1
h

=
h→0

e2h−2h2+ 13h3
6 +o(h3) −1
h

Or on a eu =
u→0

1 + u + u2

2 + u3

6 + o
(
u3). Posons u(h) =

h→0
2h − 2h2 + 13h3

6 + o
(
h3). Alors,

• u(h) −→
h→0

0

• De plus,

u(h)2 =
h→0

Ä
2h − 2h2 + 13h3

6 + o
(
h3)ä Ä2h − 2h2 + 13h3

6 + o
(
h3)ä

=
h→0

4h2 −4h3 +o
(
h3)

−4h3 +o
(
h3)

+o
(
h3)

=
h→0

4h2 −8h3 +o
(
h3) .

• Comme u(h) ∼
h→0

2h, on a u(h)3 ∼
h→0

8h3 i.e. u(h)3 =
h→0

8h3 + o
(
h3).

• Enfin, o
(
u(h)3) =

h→0
o
(
h3).

Ainsi,

e2h−2h2+ 13h3
6 +o(h3) =

h→0
1 +2h −2h2 + 13h3

6 +o
(
h3)

+ 1
2 (4h2 −8h3 +o

(
h3))

+ 1
6 (8h3 +o

(
h3))

+o
(
h3)

=
h→0

1 +2h − 3h3

6 +o
(
h3) .

Ainsi,

f (1 + h) =
h→0

1 + 2h − 3h3

6 + o
(
h3) − 1

h

=
h→0

2h − 3h3

6 + o
(
h3)

h

=
h→0

2 − 3h2

6 + o
(
h2) .

D’où,

f(x) =
x→1

2 − 3 (x − 1)2

6 + o
Ä
(x − 1)2ä

.

Par conséquent,

la courbe représentative de f admet pour tangente en 1 la droite d’équation y = 2.

De plus, f(x) − 2 ∼
x→1

− 3(x−1)2

6 ⩽ 0. Or deux équivalents ont même signe au voisinage du point considéré
donc

la courbe représentative de f est en-dessous de sa tangente au voisinage de 1.
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5.5 On a

f(x) =
x→0

x5 −
Ä
x3 + x9

3 + x15

5 + o
(
x15)ä

x4 + 1 − x14

2 + x28

24 + o (x28)

=
x→0

−x3 + x5 − x9

3 − x15

5 + o
(
x15)

1 + x4 − x14

2 + o (x15)
.

Or 1
1+u =

u→0
1 − u + u2 − u3 + u4 + o

(
u4). Posons u(x) =

x→0
x4 − x14

2 + o
(
x15). Alors,

• u(x) −→
x→0

0.

• De plus,

u(x)2 =
x→0

Å
x4 − x14

2 + o
(
x15)ãÅx4 − x14

2 + o
(
x15)ã =

x→0
x8 + o

(
x15)

• Puis,

u(x)3 = u(x)u(x)2 =
x→0

Å
x4 − x14

2 + o
(
x15)ã (x8 + o

(
x15)) =

x→0
x12 + o

(
x15) .

• Mais aussi, puisque u(x) ∼
x→0

x4, alors u(x)4 ∼
x→0

x16. Par conséquent, u(x)4 =
x→0

o
(
x15).

• A fortiori, o
(
u(x)4) =

x→0
o
(
x15).

Attention : il était important d’aller jusqu’à l’ordre 4 même si u(x)4 =
x→0

o
(
x15), en effet en restant à

l’ordre 3, nous aurions eu o
(
u(x)3) =

x→0
o
(
x12) ce qui aurait été insuffisant.

Ainsi,

1
1 + u(x)

=
x→0

1 − u + u2 − u3 + u4 + o
(
u4)

=
x→0

1 − x4 + x14

2 +o
(
x15)

+x8 +o
(
x15)

−x12 +o
(
x15)

+o
(
x15)

+o
(
x15)

=
x→0

1 − x4 + x8 − x12 + x14

2 + o
(
x15)

Donc

f(x) =
x→0

Å
−x3 + x5 − x9

3 − x15

5 + o
(
x15)ãÅ1 − x4 + x8 − x12 + x14

2 + o
(
x15)ã

=
x→0

−x3 + x7 − x11 + x15 + o
(
x15) + x5 − x9 + x13 + o

(
x15) − x9

3 + x13

9 + o
(
x15) − x15

5 + o
(
x15)

=
x→0

−x3 + x5 + x7 − 4x9

3 − x11 + 10x13

9 + 4x15

5 + o
(
x15) .

La fonction f est de classe C 15 au voisinage de 0 comme composée de fonctions qui le sont. Donc par la
formule de Taylor-Young,

f(x) =
x→0

15∑
k=0

f (k)(0)
k! xk + o

(
x15) .

Donc par unicité des coefficients d’un développement limité, on obtient que

f (15)(0)
(15)! = 4

5 .

Conclusion,

f (15)(0) = 4
515! = 12 × 14!
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