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Correction de l’'interrogation 15
d’entrainement
Ensembles et Applications

\. J

1. Restituer le cours.

1.1

1.2

1.3

14

1.5

Soient £ un ensemble et (4, B,C) € 2 (E)*. Alors,
e AN(BUC)=(ANB)U(ANC).
o AU(BNC)=(AUB)N(AUCQC).
« ANB=AUB.
« AUB=ANB.
Soient E et F' deux ensembles et f

Soient E et I’ deux ensembles et

V(x,y) €E27 (f($> :f<y)) = (l‘
Vy€eF, dx € F, y = f(x).

Soient E, F' deux ensembles et f € % (E,F). La fonction f est bijective si et seulement s’il existe g €
F (F, E) telle que

f est injective & Y) .
f est surjective &

fog=Idp et go f=1dg.

De plus dans ce cas, g = f~1.

Un professeur de mathématiques est une application (si, si je vous assure qu’un professeur ¢a s’applique...)
qui part de E 'ensemble des éléves a la téte vide (que 'on modélisera par des spheéres vides) et qui, & coups
de remplissage de caboche par des jolies démonstrations, retourne un scientifique averti, dont 1’ensemble
est noté S. Cette application est completement définie sur F car 1’échec n’existe pas, tout éleve soumis
a son enseignement devient un solide scientifique (si, si, ¢’est ce qui vous attend tous que vous le vouliez
ou non...), elle est injective (jamais vu deux éléves fusionner, faut arréter de lire des mangas...) mais pas
nécessairement surjective (lorsque l'on fixe I’enseignant du moins, il n’a pas la prétention de former a lui seul
tous les scientifiques, une quarantaine par an c’est déja bien). Ce qu’il y a de rigolo avec cette application
c’est que méme si I'on restreint son ensemble d’arrivée a son image pour la rendre surjective et donc
bijective, il n’existe pas d’application réciproque (& part peut-étre une émission du style les Marseillais...)

2. Donner un ensemble image ou réciproque.

2.1

2.2

On a le tableau de variations suivant :

“+00

On en déduit donc

[f(=3:4) =10, 16].|

On a les équivalences suivantes :

FH(-354)

~
—
8

¢t ¢ ¢ ¢
8, \
NN N

5
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2.3

2.4

2.5

2.6

2.7

Conclusion,

s =127

Soit € R. On a les équivalences suivantes :

z € f (o (R)) & M e o5 (R) x= f(M) & M € o (R) z=Tr(M).
Or si M € o (R), alors Tr (M) = Og et % (R) # 0. Donc
z € f (9 (R)) < z = Og.

Conclusion,

|/ (o (R)) = {0} .|

Attention ne mettez pas juste Or mais bien ’ensemble contenant Og.

Soit M = (CCL Z) € Mo (R). On a les équivalences suivantes :

Meft({1}) &  f(M)e{1}
& f(M) =1
& Tr(M)=1
& a+d=1
& d=1-—a.
Conclusion,
rn={(" ") @roer}.

Soit « € R. On a les équivalences suivantes :
z € f(U) & JzeU, z=f(z)
& HHER,x:f(ew)
& 0 € R, x = 2Re (em)
& 30 € R, x = 2cos (0)
& eR, g:cos(G)
x
& —e[-1;1
5 € [-1;1]
& z € [-2;2].

Conclusion,

Soit z € C. On a

z€ fH(—4; +o0) = f(z) €]-4; +o00] = 2R

Conclusion,

[£71(0—4; +00]) = { €C| Re(2) €]-2; +oo[}]

Montrons que f (.#, (R)) = .7, (R). Procédons par double inclusion.

Soit M € f (M, (R)). Alors il existe N € 4, (R) telle que M = f(N) ie. M = N + N. Alors M =
(NT + N)" = (NT)" + NT = N+ NT = M. Donc M € .%, (R). Ainsi, f (4, (R)) C .7, (R).
Réciproquement, soit M € .7, (R). Alors, en posant N = %, on observe que f(N) = NT + N = MTT +
M=M4 M car M e .7, (R)et donc f(N) =M. Donc M admet un antécédent dans .#, (R) donc
M € f (A, (R)). Ainsi, .7, (R) C f (A, (R)).

Conclusion,




-
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2.8 Montrons que f~* ({0,}) = #, (R).
Soit M € A, (R). On a les équivalences suivantes :
M e f~1({0,}) & f(M) =0, & MT +M =0, & MT = —-M
& M e o7, (R).
Conclusion,
71 ({00}) = % (R). |
2.9 On a le tableau de variations suivant :
x /2 T 27 3m 4m
0 1 1
—1 -1
Conclusion,
F([5i4r]) =21
2.10 Soit x € R. On a
1 1
xeffl({();f}) & f(x)G{O;f}
2 2
1
& 0 < cos(z) < 5
s Jkez, fg+2k7r<x<f§+2k7r ou g+2kﬂ<x<g+2kﬂ.
Conclusion,
1
! ({O; f}) = ([—z + 2km; T +2k7r} U {E + 2km; T +2k7TD .
2 2 3 3 2
keZ
2.11 Montrons que f ([-3; 2] x [ 2; 3]) = [-9; 6]. Procédons par double inclusion.
Soit z € f([-3;2] x[-2; 3]). Alors, il existe (z,y) € [-3; 2] x [-2; 3] tel que z = zy. On a donc
—-3< <2
Premier cas, y € [-2; 0], alors 2y < 2y < —3y. Ory > -2 = 2y > —4d et y > —2 = —3y < 6. Donc
—4 <2y < 2y < —3y < 6 et donc z € [—4;6].
Second cas, y € [0; 3], alors —9 < —3y < 2y < 2y < 6 et donc z € [—9;6].
Dans tous les cas, z € [-9; 6]. Donc f ([-3; 2] x [-2; 3]) C [-9; 6].
Réciproquement, si z € [-9; 6]. Alors en posant z = 3 et y = £ € [-3; 2], on a bien (z,y) € [-3; 2] x
[-2;3] et 2 =3 x £ =xy. Donc z € f([-3; 2] x [-2; 3]). Ainsi, [-9; 6] C f([-3; 2] x [-2; 3]).
Conclusion,
7 (=352 x [-2;3]) = [-9; 6].]
2.12 Soit (z,y) € R2. On a

(z,y) € 71 ({0r}) & zy =0 = =0 0OU y=0
& (z,y) € {Or} x R)U (R x {Og}).

Conclusion,

£ ({08}) = ({0=} X R)U (R x {0z}).|

NB : c’est l'union des axes des abscisses avec l'axe des ordonnées.

3/
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2.13 Montrons que f (Vect (cos, sin)) = R. Procédons par double inclusion.
Par définition de f, f (Vect (cos, sin)) C R.
Montrons 'inclusion réciproque. Soit A € R. Alors g = Acos = Acos+0 x sin € Vect (cos, sin). De plus
f(g) = g(0) = Acos (0) = X\ (attention ce n'est pas f o g mais [ évaluée en g, f est une application qui
mange des fonctions). Donc g est un antécédent de A par f dans Vect (cos, sin) donc A € f (Vect (cos, sin)).
Ainsi R C f (Vect (cos, sin)). Conclusion,
‘ f (Vect (cos, sin)) = R. ‘
2.14 Soit g € Vect (cos, sin). Alors, 3 (\, i) € R? tel que g = A cos+psin. On a les équivalences suivantes :
gef({0=) & f(9)=0r
& g(0)=0
& Acos (0) + psin (0) =0
& A=0
& g = psin € Vect (sin) .
Conclusion,
/71 ({0r}) = Vect (sin). |
2.15 Montrons que f (R) = R. Procédons par double inclusion.
Soit z € f (R). Alors il existe x € R tel que z = f(x) = 2°. Or si # € R, alors 2% € R donc z € R. Ainsi,
f(R) CR.
Réciproquement soit z € R. Alors la fonction x +— x5 étant strictement croissante sur R (dérivable sur R
et de dérivée x +— Hx? strictement positive sauf en un point & = 0) et continue et tendant vers —oo en
x — —00 et +00 en & — +00, on en déduit du théoreme de la bijection que = — z° est une bijection de R
dans R, donc il existe (un unique) x € R tel que 2° = z. Donc z = f(z) avec # € R. Ainsi, z € f (R). D’out
R C f(R). Conclusion,
f(R)=R
2.16 Soit z € C. On a les équivalences suivantes :
zef_l({ei%wb & P =T
& 2 est une racine 5iéme de ¢'F
=3 Ik € [0;4], =z= et IEHIAT
Conclusion,
ft ({ez%}) = {eiz{if’:“z]gw kelo;4] }
2.17 Montrons que f (£ (E)) = {0,{1}}. Procédons par double inclusion.
Soit B € f (2 (E)). Il existe A € & (E) tel que B = f(A). Deux cas possibles, si 1 € A alors B = f (A) =
AN{l} ={1}.Si1 ¢ Aalors B= f(A) = An{1} = 0. Donc dans tous les cas, B € {0,{1}}. Ainsi,
F(Z(E) <{0.{1}}.
Réciproquement, ) = f (0) donc @ € f (2 (E)) et {1} = f({1}) donc {1} € f (L (E)). Ainsi, {0,{1}} C
f(Z (E)). Conclusion,
/(2 () ={0,{1}} ]
2.18 Soit A € £ (E). On a les équivalences suivantes :

Ae {1 f(A) e {{1}}
fA) ={1}
An{l} ={1}
1€ A.

to e

Conclusion,

ST = ({1 1,23, {1, 3}, B}
4/9)
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3. Manipuler les ensembles.

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Supposons que A C B. Montrons que f~'(A) C f~*(B). Soit € f~!(A). Par définition, f(z) € A. Or
A C B.Donc f(z) € B, i.e. z € f~}(B). On a donc démontré que tout élément de f~'(A) est un élément
de f~1(B) et donc f~1(A) C f~1(B). Conclusion

AcB = ['A)ciB).

Soit (4, B) € 2 (E)” tel que A C B. Montrons que f(A) C f(B). Soit y € f(A). On a alors par définition
qu’il existe z € A tel que y = f(x). Or A C B. Donc x € B. Par conséquent, y = f(x) € f(B). Donc tout
élément de f(A) est un élément de f(B). Donc f(A) C f(B). Conclusion,

[ACB = f(A)CfB)

Soit (A,B) € 2 (F)*. Montrons f~'(AU B) = f~Y(A) U f~1(B). Soit € E. On a les équivalences
suivantes :
r€ fY(AUuB) & f(x) e AUB & f(xye Aou f(z) € B
& ze YA ovuxec f(B)
o zef Y AUFYB).

Par conséquent,

f 1 (AUB) = (AU (B).]

Soit (A, B) € 2 (E)*. Montrons que f(AU B) = f(A) U f(B). Soit y € F. On a

y € f(AUB) & Jre AUB, y= f(x)
(3z1 € A, y = f(z1))
y € f(A) ouye f(B)
y € f(A)U f(B).

OU (3z2 € B, y = [ (x2))

t ¢

Conclusion

|f(AUB) = f(A) U f(B).|

Soit (4, B) € 2 (F)*. Montrons f~(ANB) = f~1(A)N f~1(B). Soit z € E. On a

ze f~YANB) & f(zx)e AnB & f(z) e AET f(z) € B
& re f~YA) ETz e fTY(B)
& re fH(A)Nf(B).

Par conséquent,

i AnB) = AN B)

Soit (A, B) € & (E)°. Montrons que f(AN B) C f(A) N f(B). Soit y € f(AN B). Par définition, il existe
x € AN B tel que y = f(x). L’élément z € AN B, donc z € A et € B. Donc y est I'image d’un élément
de A (’élément ) et y est I'image d’un élément de B (le méme, ’élément x). Par conséquent, y € f(A) et
y € f(B). Ainsi, y € f(A) N f(B). Finalement, on a montré que

[f(ANB) C (AN f(B)]

Soit A € & (F). Montrons que f~! (A) = f~1(A). Soit z € E. On a

ze f(4) & flz)ye A o flz) ¢ A & zd¢ f71(A)
& z € f~1(A).

Conclusion
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4. Manipuler les injections - surjections.

4.1

4.2

4.3

44

4.5

Soient f € .7 (E,F) et g € % (F,G). On suppose que g o f est surjective. Montrons que g est surjective.
Soit y € G. Puisque go f € .F (E,G) est surjective, il existe € F tel que y = g o f(z). Ainsi, en posant
z = f(x) € F, on observe que y = g (f(x)) = g (z). Donc y posséde un antécédente dans F. Ceci étant vrai
pour tout y € G on en déduit que g est surjective. Conclusion,

‘g o f surjective = g surjective. ‘

Soit f € .Z (F,G) injective. Soit (g,h) € F (E, F)* tel que fog = f o h. Montrons que g = h. Soit z € E.
Par hypothése, fog(z) = foh(z) ie. f(g(x)) = f (h(z)). Posons y = g(x) et y’ = h(x). Alors f(y) = f ().
Or la fonction f est injective donc y = ¢’ i.e. g(z) = h(z). Ceci étant vrai pour tout = € E, on en déduit
que g = h. Conclusion,

V(g,h) € F(E,F)*, fog=foh = g=h

Soit f € .7 (E,F) injective. Soit (4, B) € 2 (E)*. On sait déja (cf question 3.6) que , f(ANB) C
f(A)N f(B). Montrons 'inclusion réciproque. Soit y € f (A) N f(B). Alors

{y ef@ {Hxl €A y=f(a1)
y € f(B) Jzz € B, y = f(22).
En particulier f (z1) = f (z2). Or f est injective donc les antécédents de y sont égaux x1 = x2. Notons z

cet antécédent commun. On a x = x1 € Aet x =29 € B. Donc z € AN B. Or y = f(z). Donc y posséde
un antécédent par f dans AN B. Donc y € f (AN B). Ainsi, f(4)N f(B) C f (AN B). Conclusion,

V(A,B) e Z(E)*, f(ANB)=f(A)Nf(B).

Soit f € .Z (E, F) surjective. Soit A € & (F). Montrons que f (A) C f (A). Soit y € f(A). Alorsy ¢ f (A).
Donc pour tout z € A, on a y # f(x) i.e. y n’admet aucun antécédent dans A. Or f est surjective, on sait
donc que y admet malgré tout un antécédent : il existe zg € F tel que y = f (xg). Puisque y ¢ f (A), on en
déduit que 2o ¢ A. Donc g € A et puisque y = f (20), on a y € f (A). Ainsi, f(A) C f (A). Conclusion,

vAe 2(E), F(A)Cf(A).

Soient f € & (E,F) et g € % (F,G). On suppose que g o f est surjective et que g est injective. Montrons
que f est surjective. Soit y € F'. Alors g (y) € G. Posons z = g (y). Puisque go f est surjective alors on sait
que z admet un antécédent par go f : il existe € E tel que z = go f(x). Des lors, g(y) = z = g (f(z)).
Or g est injective. Donc y = f(z). Autrement dit x est un antécédent de y par f. Ceci étant vrai pour tout

y € F, on en déduit que ‘ f est surjective ‘
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5. Faire de la composition de développement limité.

5.1 On a
22 4 .
cos(x)mjol—?—kﬂ—ko(x).

De plus,

1/2)(—1/2 1/2)(—1/2)(—3/2

T et WU U8R
u o u? ud 3
Selta gt to®)
Posons u(x) = z—;Jrngo(xf’).Alors,
o u(zx) — 0.
x—0
() _ IQ 1:4
e e K OB
e De plus,
2 4 2 4
20) = (-5 4% o)) (A5 T 5)
“(x)xio( 2+24+0<x>)< > tartol@)
4
z 5
szZ+O(x)
@) _ _at
Donc —*5* o mto (2°).

. o _z2 3 Y ozt 3 _ 5
o Puisque u(x) T alors u®(x) T E Donc u?(x) o f (z°).

« Enfin, o (v*(z)) =0 (7).

Ainsi,
I2 fE4 I’4
f(x):\/cos(x)wio\/1+u(z)wi01—Z+@+o(z5)—§+0(x5)+0(335)+0(x5)
=5 (s 1) 7 o6
>0 4 " \16x3 16x2/7 TV
x? 1 5
St () e
22 ! 5
x:>0 _Z_%—'_O(x)
Conclusion,
2zt 5
f( )x:(J —?—%4'0(90)

La fonction f étant paire et le développement de f étant en 0, il est logique que son développement n’admette
que des puissances paires.

5.2 On a

arctan (x) =t % +o (3;4) .
x

Donc

23
f(z) = In (arctan(zx)) =, In (a: -5 1o (z4)>
>0

= In (az <1 — %2 +o0 (m3)))

x>0

zoln(x)—i—ln(l—%Q—&—o(x?’)).

T—r

Deplusln(1+u) = u— “72 + o0 (u?). Posons u(x) —% + o (2%). Alors,

u—0 rc:>0

7/8)
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* U(I) 93:)0

e De plus,

0.

o eto(u(z)) o (2®).

Par conséquent,

Conclusion,

53 On a

Donc

De plus In (1 + u) = U “72 + o (u?). Posons u(x)

2

f@) = n(x)+In(1+u(z)) = 1H(1’)—%+0($3)+0($3)+0(1'3)

z—0 x—0
x>0 >0
IE2 3
f@) = ()~ 5t o)
x>0
JIS 5 5

2 4

6 120

= 1n(m)+ln(1+x—+xf+o(x4)>.

o u(x) — 0.
z—0
» Deplus, 2 4 2 4 4
2y = (%4 2 ) (%2 4):i 4
“(”)x:o(ﬁ 120+0($)>(6 20 T0)) 536 o)
Donc 2( ) A
u*(z) _ 2t 4
—y Se m tol)
o eto(u(x)) xjoo(x‘l).
Par conséquent,
= In(z)+mn(1+u(x) =1 ()+x2+x—4+ (4)—x—4+0
f@) S @)+l 4u@) = In@)+ 5+ 55+0() -7
x>0 x>0
Conclusion,
22 gt 4
f(x)xioln(;v)—l—z—@—i—o(x)
x>0
5.4 Soitf:x»—)zfli;(lx).f’osons]:]e_z—l;—i—oo[, un voisinage de 0, et
Vh el (h)—f(l—i—h)—L
W= T 2tm(lth)
On a
In(l14h) = h—h—2+o(h2)
h—0 2 ’
Donc B " )
g(h)h: h2 2 :5 h h2 2
‘)02+h—7+0(h) 1+§_T+O(h)
De plus, 1+ = u?® + o (u?). Posons u(h) o b %2 + 0 (h?). Alors,

8/
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) 2,0
h | h?
o —uf( )h:() *§+T+O<h2)
o u(h) o & donc u?(h) ~ %2 et donc
h2
2 - 2
( )h—>0 4 +0(h )
. 2 _ 2
et o (u?(h)) 0 (h?).
Par suite,
h h ( h 9 h? 9 9 )
= — 1 _ — _
g(h)h—>021—|—u ho0 2 4+ o) + T o) relr)
h h 9
L (E PR )
h h%2 A3 3
o2 s b et
Conclusion,
-1 (z—1?% (z—1)>° 3
f@)=g@-1) = —5— - T to(e-1?)
5.5 On a
72 4 .
cos(z) 1301—3—&-%—&-0(30 ).
Donc - s 4
flz) =@ = lmFHEto(e®) — gemTHE (=)
z—0 z—0

w u? ud . 22 4
Ore —1—|—u+7—|—?+0(u3).Posonsu(x)m:0—7+ﬂ+o(x5).Alors,
o u(x) — 0.
r—0
e De plus,
2 4 2 4 4
2g) = (- 45 s)(_z v 5)22 5
u(x)x_m( 2—1—24—1— o (z°) 2+24+0(:1:) 4—1—0(30).

Donc Lz(z) =0 % + o0 (z%).

o u(x) ST ® donc u(x) ~ —% o (z°).
« Enfin, o (v* (x)) :Oo( %).
Ainsi,
wlw z? 2t zt
f(a;)zioee ( )xjoe(l_?+ﬂ+0( 5)+§+0(x5)+0(335)+0(m5))
2 4
G (=545 o)
Conclusion,
ex? ex? 5
@) 5pe——5 + 5 to(@)

La fonction f étant paire et le développement limité étant 0, il est logique de n’avoir que des puissances
paires dans son développement limité.



