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Correction de l’interrogation 15
d’entrainement

Ensembles et Applications

1. Restituer le cours.
1.1 Soient E un ensemble et (A, B, C) ∈ P (E)3. Alors,

• A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
• A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
• A ∩ B = A ∪ B.
• A ∪ B = A ∩ B.

1.2 Soient E et F deux ensembles et f ∈ F (E, F ). Soient A ⊆ E et B ⊆ F . Alors,

f (A) = {y ∈ F | ∃x ∈ A, y = f(x)}
f−1 (B) = {x ∈ E | f(x) ∈ B } .

1.3 Soient E et F deux ensembles et f ∈ F (E, F ).

f est injective ⇔ ∀ (x, y) ∈ E2, (f(x) = f(y)) ⇒ (x = y) .

f est surjective ⇔ ∀y ∈ F, ∃x ∈ E, y = f(x).

1.4 Soient E, F deux ensembles et f ∈ F (E, F ). La fonction f est bijective si et seulement s’il existe g ∈
F (F, E) telle que

f ◦ g = IdF et g ◦ f = IdE .

De plus dans ce cas, g = f−1.
1.5 Un professeur de mathématiques est une application (si, si je vous assure qu’un professeur ça s’applique...)

qui part de E l’ensemble des élèves à la tête vide (que l’on modélisera par des sphères vides) et qui, à coups
de remplissage de caboche par des jolies démonstrations, retourne un scientifique averti, dont l’ensemble
est noté S. Cette application est complètement définie sur E car l’échec n’existe pas, tout élève soumis
à son enseignement devient un solide scientifique (si, si, c’est ce qui vous attend tous que vous le vouliez
ou non...), elle est injective (jamais vu deux élèves fusionner, faut arrêter de lire des mangas...) mais pas
nécessairement surjective (lorsque l’on fixe l’enseignant du moins, il n’a pas la prétention de former à lui seul
tous les scientifiques, une quarantaine par an c’est déjà bien). Ce qu’il y a de rigolo avec cette application
c’est que même si l’on restreint son ensemble d’arrivée à son image pour la rendre surjective et donc
bijective, il n’existe pas d’application réciproque (à part peut-être une émission du style les Marseillais...)

2. Donner un ensemble image ou réciproque.
2.1 On a le tableau de variations suivant :

x

f

−∞ −3 0 4 +∞

+∞+∞

00

+∞+∞

9 16

On en déduit donc
f ([−3 ; 4]) = [0 , 16] .

2.2 On a les équivalences suivantes :

f−1 ([−3 ; 4]) ⇔ f(x) ∈ [−2; 2]
⇔ −2 ⩽ f(x) ⩽ 2
⇔ −2 ⩽ x2 ⩽ 2
⇔ x2 ⩽ 2
⇔ −

√
2 ⩽ x ⩽

√
2.
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Conclusion,
f−1 ([−3 ; 4]) = [−2 , 2] .

2.3 Soit x ∈ R. On a les équivalences suivantes :

x ∈ f (A2 (R)) ⇔ ∃M ∈ A2 (R) x = f(M) ⇔ ∃M ∈ A2 (R) x = Tr (M) .

Or si M ∈ A2 (R), alors Tr (M) = 0R et A2 (R) ̸= ∅. Donc

x ∈ f (A2 (R)) ⇔ x = 0R.

Conclusion,
f (A2 (R)) = {0R} .

Attention ne mettez pas juste 0R mais bien l’ensemble contenant 0R.

2.4 Soit M =
Å

a b
c d

ã
∈ M2 (R). On a les équivalences suivantes :

M ∈ f−1 ({1}) ⇔ f (M) ∈ {1}
⇔ f(M) = 1
⇔ Tr (M) = 1
⇔ a + d = 1
⇔ d = 1 − a.

Conclusion,

f−1 ({1}) =
ßÅ

a b
c 1 − a

ã ∣∣∣∣ (a, b, c) ∈ R3
™

.

2.5 Soit x ∈ R. On a les équivalences suivantes :

x ∈ f (U) ⇔ ∃z ∈ U, x = f (z)
⇔ ∃θ ∈ R, x = f

(
eiθ

)
⇔ ∃θ ∈ R, x = 2Re

(
eiθ

)
⇔ ∃θ ∈ R, x = 2 cos (θ)

⇔ ∃θ ∈ R,
x

2 = cos (θ)

⇔ x

2 ∈ [−1 ; 1]

⇔ x ∈ [−2; 2] .

Conclusion,
f (U) = [−2 ; 2] .

2.6 Soit z ∈ C. On a

z ∈ f−1 (]−4 ; +∞[) ⇔ f(z) ∈ ]−4 ; +∞[ ⇔ 2Re (z) ∈ ]−4 ; +∞[
⇔ Re (z) ∈ ]−2 ; +∞[

Conclusion,
f−1 (]−4 ; +∞[) = {z ∈ C | Re (z) ∈ ]−2 ; +∞[}

2.7 Montrons que f (Mn (R)) = Sn (R). Procédons par double inclusion.
Soit M ∈ f (Mn (R)). Alors il existe N ∈ Mn (R) telle que M = f (N) i.e. M = NT + N . Alors MT =(
NT + N

)T =
(
NT

)T + NT = N + NT = M . Donc M ∈ Sn (R). Ainsi, f (Mn (R)) ⊆ Sn (R).
Réciproquement, soit M ∈ Sn (R). Alors, en posant N = M

2 , on observe que f (N) = NT + N = MT

2 +
M
2 = M

2 + M
2 car M ∈ Sn (R) et donc f (N) = M . Donc M admet un antécédent dans Mn (R) donc

M ∈ f (Mn (R)). Ainsi, Sn (R) ⊆ f (Mn (R)).
Conclusion,

f (Mn (R)) = Sn (R) .
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2.8 Montrons que f−1 ({0n}) = An (R).
Soit M ∈ Mn (R). On a les équivalences suivantes :

M ∈ f−1 ({0n}) ⇔ f (M) = 0n ⇔ MT + M = 0n ⇔ MT = −M

⇔ M ∈ An (R) .

Conclusion,
f−1 ({0n}) = An (R) .

2.9 On a le tableau de variations suivant :

x

f

π/2 π 2π 3π 4π

00

−1−1

11

−1−1

11

Conclusion,

f
([π

2 ; 4π
])

= [−1 ; 1] .

2.10 Soit x ∈ R. On a

x ∈ f−1
Åï

0 ; 1
2

òã
⇔ f(x) ∈

ï
0 ; 1

2

ò
⇔ 0 ⩽ cos(x) ⩽ 1

2
⇔ ∃k ∈ Z, −π

2 + 2kπ ⩽ x ⩽ −π

3 + 2kπ OU
π

2 + 2kπ ⩽ x ⩽
π

3 + 2kπ.

Conclusion,

f−1
Åï

0 ; 1
2

òã
=

⋃
k∈Z

([
−π

2 + 2kπ ; −π

3 + 2kπ
]

∪
[π

3 + 2kπ ; π

2 + 2kπ
])

.

2.11 Montrons que f ([−3 ; 2] × [−2 ; 3]) = [−9 ; 6]. Procédons par double inclusion.
Soit z ∈ f ([−3 ; 2] × [−2 ; 3]). Alors, il existe (x, y) ∈ [−3 ; 2] × [−2 ; 3] tel que z = xy. On a donc
−3 ⩽ x ⩽ 2.
Premier cas, y ∈ [−2 ; 0], alors 2y ⩽ xy ⩽ −3y. Or y ⩾ −2 ⇒ 2y ⩾ −4 et y ⩾ −2 ⇒ −3y ⩽ 6. Donc
−4 ⩽ 2y ⩽ xy ⩽ −3y ⩽ 6 et donc z ∈ [−4; 6].
Second cas, y ∈ [0 ; 3], alors −9 ⩽ −3y ⩽ xy ⩽ 2y ⩽ 6 et donc z ∈ [−9; 6].
Dans tous les cas, z ∈ [−9 ; 6]. Donc f ([−3 ; 2] × [−2 ; 3]) ⊆ [−9 ; 6].
Réciproquement, si z ∈ [−9 ; 6]. Alors en posant x = 3 et y = z

3 ∈ [−3 ; 2], on a bien (x, y) ∈ [−3 ; 2] ×
[−2 ; 3] et z = 3 × z

3 = xy. Donc z ∈ f ([−3 ; 2] × [−2 ; 3]). Ainsi, [−9 ; 6] ⊆ f ([−3 ; 2] × [−2 ; 3]).
Conclusion,

f ([−3 ; 2] × [−2 ; 3]) = [−9 ; 6] .

2.12 Soit (x, y) ∈ R2. On a

(x, y) ∈ f−1 ({0R}) ⇔ xy = 0 ⇔ x = 0 OU y = 0
⇔ (x, y) ∈ ({0R} × R) ∪ (R × {0R}) .

Conclusion,
f−1 ({0R}) = ({0R} × R) ∪ (R × {0R}) .

NB : c’est l’union des axes des abscisses avec l’axe des ordonnées.
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2.13 Montrons que f (Vect (cos , sin)) = R. Procédons par double inclusion.
Par définition de f , f (Vect (cos , sin)) ⊆ R.
Montrons l’inclusion réciproque. Soit λ ∈ R. Alors g = λ cos = λ cos +0 × sin ∈ Vect (cos , sin). De plus
f (g) = g(0) = λ cos (0) = λ (attention ce n’est pas f ◦ g mais f évaluée en g, f est une application qui
mange des fonctions). Donc g est un antécédent de λ par f dans Vect (cos , sin) donc λ ∈ f (Vect (cos , sin)).
Ainsi R ⊆ f (Vect (cos , sin)). Conclusion,

f (Vect (cos , sin)) = R.

2.14 Soit g ∈ Vect (cos , sin). Alors, ∃ (λ, µ) ∈ R2 tel que g = λ cos +µ sin. On a les équivalences suivantes :

g ∈ f−1 ({0R}) ⇔ f (g) = 0R
⇔ g(0) = 0
⇔ λ cos (0) + µ sin (0) = 0
⇔ λ = 0
⇔ g = µ sin ∈ Vect (sin) .

Conclusion,
f−1 ({0R}) = Vect (sin) .

2.15 Montrons que f (R) = R. Procédons par double inclusion.
Soit z ∈ f (R). Alors il existe x ∈ R tel que z = f(x) = x5. Or si x ∈ R, alors x5 ∈ R donc z ∈ R. Ainsi,
f (R) ⊆ R.
Réciproquement soit z ∈ R. Alors la fonction x 7→ x5 étant strictement croissante sur R (dérivable sur R
et de dérivée x 7→ 5x4 strictement positive sauf en un point x = 0) et continue et tendant vers −∞ en
x → −∞ et +∞ en x → +∞, on en déduit du théorème de la bijection que x 7→ x5 est une bijection de R
dans R, donc il existe (un unique) x ∈ R tel que x5 = z. Donc z = f(x) avec x ∈ R. Ainsi, z ∈ f (R). D’où
R ⊆ f (R). Conclusion,

f (R) = R.

2.16 Soit z ∈ C. On a les équivalences suivantes :

z ∈ f−1
Ä¶

ei 2π
3
©ä

⇔ z5 = ei 2π
3

⇔ z est une racine 5ième de ei 2π
3 .

⇔ ∃k ∈ J0; 4K, z = ei 2π
15 +i 2kπ

5 .

Conclusion,

f−1
Ä¶

ei 2π
3
©ä

=
{

ei 2π
15 +i 2kπ

5

∣∣∣ k ∈ J0 ; 4K
}

.

2.17 Montrons que f (P (E)) = {∅, {1}}. Procédons par double inclusion.
Soit B ∈ f (P (E)). Il existe A ∈ P (E) tel que B = f(A). Deux cas possibles, si 1 ∈ A alors B = f (A) =
A ∩ {1} = {1}. Si 1 /∈ A alors B = f (A) = A ∩ {1} = ∅. Donc dans tous les cas, B ∈ {∅, {1}}. Ainsi,
f (P (E)) ⊆ {∅, {1}}.
Réciproquement, ∅ = f (∅) donc ∅ ∈ f (P (E)) et {1} = f ({1}) donc {1} ∈ f (P (E)). Ainsi, {∅, {1}} ⊆
f (P (E)). Conclusion,

f (P (E)) = {∅, {1}} .

2.18 Soit A ∈ P (E). On a les équivalences suivantes :

A ∈ f−1 ({{1}}) ⇔ f (A) ∈ {{1}}
⇔ f (A) = {1}
⇔ A ∩ {1} = {1}
⇔ 1 ∈ A.

Conclusion,
f−1 ({{1}}) = {{1} , {1, 2} , {1, 3} , E} .

4/9



Mathématiques PTSI, IntEnt15 Cor 2025-2026

3. Manipuler les ensembles.
3.1 Supposons que A ⊆ B. Montrons que f−1(A) ⊂ f−1(B). Soit x ∈ f−1(A). Par définition, f(x) ∈ A. Or

A ⊆ B. Donc f(x) ∈ B, i.e. x ∈ f−1(B). On a donc démontré que tout élément de f−1(A) est un élément
de f−1(B) et donc f−1(A) ⊆ f−1(B). Conclusion

A ⊂ B ⇒ f−1(A) ⊂ f−1(B).

3.2 Soit (A, B) ∈ P (E)2 tel que A ⊆ B. Montrons que f(A) ⊂ f(B). Soit y ∈ f(A). On a alors par définition
qu’il existe x ∈ A tel que y = f(x). Or A ⊆ B. Donc x ∈ B. Par conséquent, y = f(x) ∈ f(B). Donc tout
élément de f(A) est un élément de f(B). Donc f(A) ⊆ f(B). Conclusion,

A ⊂ B ⇒ f(A) ⊂ f(B).

3.3 Soit (A, B) ∈ P (F )2. Montrons f−1(A ∪ B) = f−1(A) ∪ f−1(B). Soit x ∈ E. On a les équivalences
suivantes :

x ∈ f−1(A ∪ B) ⇔ f(x) ∈ A ∪ B ⇔ f(x) ∈ A OU f(x) ∈ B

⇔ x ∈ f−1(A) OU x ∈ f−1(B)
⇔ x ∈ f−1(A) ∪ f−1(B).

Par conséquent,
f−1 (A ∪ B) = f−1 (A) ∪ f−1 (B) .

3.4 Soit (A, B) ∈ P (E)2. Montrons que f(A ∪ B) = f(A) ∪ f(B). Soit y ∈ F . On a

y ∈ f(A ∪ B) ⇔ ∃x ∈ A ∪ B, y = f(x)
⇔ (∃x1 ∈ A, y = f (x1)) OU (∃x2 ∈ B, y = f (x2))
⇔ y ∈ f(A) OU y ∈ f(B)
⇔ y ∈ f(A) ∪ f(B).

Conclusion
f(A ∪ B) = f(A) ∪ f(B).

3.5 Soit (A, B) ∈ P (F )2. Montrons f−1(A ∩ B) = f−1(A) ∩ f−1(B). Soit x ∈ E. On a

x ∈ f−1(A ∩ B) ⇔ f(x) ∈ A ∩ B ⇔ f(x) ∈ A ET f(x) ∈ B

⇔ x ∈ f−1(A) ET x ∈ f−1(B)
⇔ x ∈ f−1(A) ∩ f−1(B).

Par conséquent,
f−1(A ∩ B) = f−1(A) ∩ f−1(B).

3.6 Soit (A, B) ∈ P (E)2. Montrons que f(A ∩ B) ⊂ f(A) ∩ f(B). Soit y ∈ f(A ∩ B). Par définition, il existe
x ∈ A ∩ B tel que y = f(x). L’élément x ∈ A ∩ B, donc x ∈ A et x ∈ B. Donc y est l’image d’un élément
de A (l’élément x) et y est l’image d’un élément de B (le même, l’élément x). Par conséquent, y ∈ f(A) et
y ∈ f(B). Ainsi, y ∈ f(A) ∩ f(B). Finalement, on a montré que

f(A ∩ B) ⊂ f(A) ∩ f(B).

3.7 Soit A ∈ P (F ). Montrons que f−1 (A)
= f−1(A). Soit x ∈ E. On a

x ∈ f−1 (A)
⇔ f(x) ∈ A ⇔ f(x) /∈ A ⇔ x /∈ f−1 (A)

⇔ x ∈ f−1 (A).

Conclusion
f−1 (A)

= f−1(A).
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4. Manipuler les injections - surjections.
4.1 Soient f ∈ F (E, F ) et g ∈ F (F, G). On suppose que g ◦ f est surjective. Montrons que g est surjective.

Soit y ∈ G. Puisque g ◦ f ∈ F (E, G) est surjective, il existe x ∈ E tel que y = g ◦ f(x). Ainsi, en posant
z = f(x) ∈ F , on observe que y = g (f(x)) = g (z). Donc y possède un antécédente dans F . Ceci étant vrai
pour tout y ∈ G on en déduit que g est surjective. Conclusion,

g ◦ f surjective ⇒ g surjective.

4.2 Soit f ∈ F (F, G) injective. Soit (g, h) ∈ F (E, F )2 tel que f ◦ g = f ◦ h. Montrons que g = h. Soit x ∈ E.
Par hypothèse, f ◦g(x) = f ◦h(x) i.e. f (g(x)) = f (h(x)). Posons y = g(x) et y′ = h(x). Alors f(y) = f (y′).
Or la fonction f est injective donc y = y′ i.e. g(x) = h(x). Ceci étant vrai pour tout x ∈ E, on en déduit
que g = h. Conclusion,

∀ (g, h) ∈ F (E, F )2
, f ◦ g = f ◦ h ⇒ g = h.

4.3 Soit f ∈ F (E, F ) injective. Soit (A, B) ∈ P (E)2. On sait déjà (cf question 3.6) que , f (A ∩ B) ⊆
f (A) ∩ f (B). Montrons l’inclusion réciproque. Soit y ∈ f (A) ∩ f (B). Alors®

y ∈ f (A)
y ∈ f (B)

⇒
®

∃x1 ∈ A, y = f (x1)
∃x2 ∈ B, y = f (x2) .

En particulier f (x1) = f (x2). Or f est injective donc les antécédents de y sont égaux x1 = x2. Notons x
cet antécédent commun. On a x = x1 ∈ A et x = x2 ∈ B. Donc x ∈ A ∩ B. Or y = f(x). Donc y possède
un antécédent par f dans A ∩ B. Donc y ∈ f (A ∩ B). Ainsi, f (A) ∩ f (B) ⊆ f (A ∩ B). Conclusion,

∀ (A, B) ∈ P (E)2
, f (A ∩ B) = f (A) ∩ f (B) .

4.4 Soit f ∈ F (E, F ) surjective. Soit A ∈ P (F ). Montrons que f (A) ⊆ f
(
A
)
. Soit y ∈ f (A). Alors y /∈ f (A).

Donc pour tout x ∈ A, on a y ̸= f(x) i.e. y n’admet aucun antécédent dans A. Or f est surjective, on sait
donc que y admet malgré tout un antécédent : il existe x0 ∈ E tel que y = f (x0). Puisque y /∈ f (A), on en
déduit que x0 /∈ A. Donc x0 ∈ A et puisque y = f (x0), on a y ∈ f

(
A
)
. Ainsi, f (A) ⊆ f

(
A
)
. Conclusion,

∀A ∈ P (E) , f (A) ⊆ f
(
A
)

.

4.5 Soient f ∈ F (E, F ) et g ∈ F (F, G). On suppose que g ◦ f est surjective et que g est injective. Montrons
que f est surjective. Soit y ∈ F . Alors g (y) ∈ G. Posons z = g (y). Puisque g ◦ f est surjective alors on sait
que z admet un antécédent par g ◦ f : il existe x ∈ E tel que z = g ◦ f(x). Dès lors, g(y) = z = g (f(x)).
Or g est injective. Donc y = f(x). Autrement dit x est un antécédent de y par f . Ceci étant vrai pour tout
y ∈ F , on en déduit que f est surjective .
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5. Faire de la composition de développement limité.
5.1 On a

cos (x) =
x→0

1 − x2

2 + x4

24 + o
(
x5) .

De plus,
√

1 + u =
u→0

1 + u

2 + (1/2)(−1/2)
2 u2 + (1/2)(−1/2)(−3/2)

6 u3 + o
(
u3)

=
u→0

1 + u

2 − u2

8 + u3

16 + o
(
u3)

Posons u(x) =
x→0

− x2

2 + x4

24 + o
(
x5). Alors,

• u(x) →
x→0

0.

• u(x)
2 =

x→0
− x2

4 + x4

48 + o
(
x5).

• De plus,

u2(x) =
x→0

Å
−x2

2 + x4

24 + o
(
x5)ãÅ−x2

2 + x4

24 + o
(
x5)ã

=
x→0

x4

4 + o
(
x5)

Donc − u2(x)
8 =

x→0
− x4

32 + o
(
x5).

• Puisque u(x) ∼
x→0

− x2

2 , alors u3(x) ∼
x→0

− x6

8 . Donc u3(x) =
x→0

o
(
x5).

• Enfin, o
(
u3(x)

)
=

x→0
o
(
x5).

Ainsi,

f(x) =
»

cos(x) =
x→0

»
1 + u(x) =

x→0
1 − x2

4 + x4

48 + o
(
x5) − x4

32 + o
(
x5) + o

(
x5) + o

(
x5)

=
x→0

1 − x2

4 +
Å 1

16 × 3 − 1
16 × 2

ã
x4 + o

(
x5)

=
x→0

1 − x2

4 +
Å

−1
6

ã
x4

16 + o
(
x5)

=
x→0

1 − x2

4 − x4

96 + o
(
x5)

Conclusion,

f(x) =
x→0

1 − x2

2 − x4

96 + o
(
x5) .

La fonction f étant paire et le développement de f étant en 0, il est logique que son développement n’admette
que des puissances paires.

5.2 On a
arctan (x) =

x→0
x − x3

3 + o
(
x4) .

Donc

f(x) = ln (arctan(x)) =
x→0
x>0

ln
Å

x − x3

3 + o
(
x4)ã

=
x→0
x>0

ln
Å

x

Å
1 − x2

3 + o
(
x3)ãã

=
x→0
x>0

ln (x) + ln
Å

1 − x2

3 + o
(
x3)ã .

De plus ln (1 + u) =
u→0

u − u2

2 + o
(
u2). Posons u(x) =

x→0
− x2

3 + o
(
x3). Alors,
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• u(x) →
x→0

0.
• De plus,

u2(x) =
x→0

Å
−x2

3 + o
(
x3)ãÅ−x2

3 + o
(
x3)ã =

x→0
o
(
x3) .

• et o
(
u2(x)

)
=

x→0
o
(
x3).

Par conséquent,

f(x) =
x→0
x>0

ln (x) + ln (1 + u(x)) =
x→0
x>0

ln (x) − x2

3 + o
(
x3) + o

(
x3) + o

(
x3)

Conclusion,

f(x) =
x→0
x>0

ln (x) − x2

3 + o
(
x3) .

5.3 On a
sh (x) =

x→0
x + x3

6 + x5

120 + o
(
x5) .

Donc

f(x) = ln (sh(x)) =
x→0
x>0

ln
Å

x + x3

6 + x5

120 + o
(
x5)ã

=
x→0
x>0

ln
Å

x

Å
1 + x2

6 + x4

120 + o
(
x4)ãã

=
x→0
x>0

ln (x) + ln
Å

1 + x2

6 + x4

120 + o
(
x4)ã .

De plus ln (1 + u) =
u→0

u − u2

2 + o
(
u2). Posons u(x) =

x→0
x2

6 + x4

120 + o
(
x4). Alors,

• u(x) →
x→0

0.
• De plus,

u2(x) =
x→0

Å
x2

6 + x4

120 + o
(
x4)ãÅx2

6 + x4

120 + o
(
x4)ã =

x→0

x4

36 + o
(
x4) .

Donc
−u2(x)

2 =
x→0

−x4

72 + o
(
x4) .

• et o
(
u2(x)

)
=

x→0
o
(
x4).

Par conséquent,

f(x) =
x→0
x>0

ln (x) + ln (1 + u(x)) =
x→0
x>0

ln (x) + x2

6 + x4

120 + o
(
x4) − x4

72 + o
(
x4) + o

(
x4) .

Conclusion,

f(x) =
x→0
x>0

ln (x) + x2

6 − x4

180 + o
(
x4) .

5.4 Soit f : x 7→ x−1
2+ln(x) . Posons I =

]
e−2 −1 ; +∞

[
, un voisinage de 0, et

∀h ∈ I, g(h) = f (1 + h) = h

2 + ln (1 + h) .

On a
ln (1 + h) =

h→0
h − h2

2 + o
(
h2) .

Donc
g(h) =

h→0

h

2 + h − h2

2 + o (h2)
= h

2
1

1 + h
2 − h2

4 + o (h2)

De plus, 1
1+u =

u→0
1 − u + u2 + o

(
u2). Posons u(h) =

h→0
h
2 − h2

4 + o
(
h2). Alors,
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• u(h) →
h→0

0.

• −u(h) =
h→0

− h
2 + h2

4 + o
(
h2).

• u(h) ∼
h→0

h
2 donc u2(h) ∼

h→0
h2

4 et donc

u2(h) =
h→0

h2

4 + o
(
h2)

• et o
(
u2(h)

)
=

h→0
o
(
h2).

Par suite,

g(h) =
h→0

h

2
1

1 + u(h) =
h→0

h

2

Å
1 − h

4 + h2

4 + o
(
h2) + h2

4 + o
(
h2) + o

(
h2)ã

=
h→0

h

2

Å
1 − h

4 + h2

2 + o
(
h2)ã

=
h→0

h

2 − h2

8 + h3

4 + o
(
h3) .

Conclusion,

f(x) = g (x − 1) =
x→1

x − 1
2 − (x − 1)2

8 + (x − 1)3

4 + o
Ä
(x − 1)3ä

.

5.5 On a
cos(x) =

x→0
1 − x2

2 + x4

24 + o
(
x5) .

Donc
f(x) = ecos(x) =

x→0
e1− x2

2 + x4
24 +o(x5) =

x→0
e e− x2

2 + x4
24 +o(x5) .

Or eu = 1 + u + u2

2 + u3

6 + o
(
u3). Posons u(x) =

x→0
− x2

2 + x4

24 + o
(
x5). Alors,

• u(x) →
x→0

0.

• De plus,

u2(x) =
x→0

Å
−x2

2 + x4

24 + o
(
x5)ãÅ−x2

2 + x4

24 + o
(
x5)ã =

x→0

x4

4 + o
(
x5) .

Donc u2(x)
2 =

x→0
x4

8 + o
(
x5).

• u(x) ∼
x→0

− x2

2 donc u3(x) ∼
x→0

− x6

8 =
x→0

o
(
x5).

• Enfin, o
(
u3(x)

)
=

x→0
o
(
x5).

Ainsi,

f(x) =
x→0

e eu(x) =
x→0

e
Å

1 − x2

2 + x4

24 + o
(
x5) + x4

8 + o
(
x5) + o

(
x5) + o

(
x5)ã

=
x→0

e
Å

1 − x2

2 + x4

6 + o
(
x5)ã .

Conclusion,

f(x) =
x→0

e −e x2

2 + e x4

6 + o
(
x5) .

La fonction f étant paire et le développement limité étant 0, il est logique de n’avoir que des puissances
paires dans son développement limité.
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