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Correction de l’interrogation 16
d’entrainement

Continuité et dérivabilité

1. Restituer le cours.
1.1 Soit a ∈ R, I un voisinage de a, f , g et h trois éléments de F (I,R). On suppose que

• pour tout x ∈ I, g(x) ⩽ f(x) ⩽ h(x),
• il existe l ∈ R tel que lim

x→a
g(x) = lim

x→a
h(x) = l.

Alors on a également lim
x→a

f(x) = l.

1.2 Soient a ∈ R, l ∈ R, I un voisinage de a et f : I 7→ R. Alors les deux points suivants sont équivalents :
i. lim

x→a
f(x) = l

ii. pour tout suite (un)n∈N tendant vers a, on a (f (un))n∈N qui tend vers l.
1.3 Soient (a, b) ∈ R2 et f une fonction continue sur le segment [a; b]. Alors, f est bornée sur [a; b] et atteint

ses bornes :
∃ (α, β) ∈ [a; b]2 , f (α) = m = min

t∈[a;b]
f(t) et f (β) = M = max

t∈[a;b]
f(t).

1.4 Soit (a, b) ∈ R2, a < b. Soit f une fonction continue sur [a; b] et dérivable sur ]a; b[. Alors il existe c ∈ ]a; b[
tel que

f(b) − f(a)
b − a

= f ′(c).

1.5 Posons LO = lipschitzienne. Alors on obtient, à l’endroit puis à l’envers :

LOOL

2. (a) Définitions sur exemples.
2.1 x 7→

√
x est continue en 0 si et seulement si

∀ ε > 0, ∃η > 0, ∀x ∈ [0 ; η] ,
∣∣∣√x −

√
0
∣∣∣ ⩽ ε

2.2 sh est dérivable en 3 et sa dérivée vaut ch(3) si et seulement si

∀ ε > 0, ∃η > 0, ∀x ∈ [3 − η ; 3 + η] \ {3} ,

∣∣∣∣ sh(x) − sh(3)
x − 3 − ch(3)

∣∣∣∣ ⩽ ε

2.3 lim
x→0
x ̸=0

sin(x)
x

= 1 si et seulement si

∀ ε > 0, ∃η > 0, ∀x ∈ [−η ; η] \ {0} ,

∣∣∣∣ sin(x)
x

− 1
∣∣∣∣ ⩽ ε

2.4 x 7→ ⌊x⌋ est continue à droite en 5 si et seulement si

∀ ε > 0, ∃η > 0, ∀x ∈ [5 ; 5 + η] , |⌊x⌋ − ⌊5⌋| ⩽ ε .

2.5 Soit n ∈ N. xn ≪
x→+∞

ex si et seulement si

∀ ε > 0, ∃A ∈ R∗
+, ∀x ∈ [A ; +∞[ ,

∣∣∣∣xn

ex

∣∣∣∣ ⩽ ε .
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2.6 x 7→ cos(x) n’admet pas de limite en +∞ si et seulement si

∀l ∈ R, ∃ ε > 0, ∀A ∈ R, ∃x ∈ [A ; +∞[ , |cos(x) − l| > ε .

2.7 lim
x→0
x<0

1
x

= −∞ si et seulement si

∀M ∈ R, ∃η > 0, ∀x ∈ [−η ; 0[ ,
1
x
⩽ M.

2.8 f est bornée au voisinage de +∞ si et seulement si

∃A ∈ R, ∃M ∈ R+, ∀x ∈ [A ; +∞[ , |f(x)| ⩽ M.

Attention à bien mettre le M avant les x.

2.9 f est positive au voisinage de 0 si et seulement si

∃η > 0, ∀x ∈ [−η ; η] , f(x) ⩾ 0.

2.10 x 7→ |x| est dérivable à gauche en 0 et cette dérivée vaut −1 si et seulement si

∀ ε > 0, ∃η > 0, ∀x ∈ [−η ; 0[ ,

∣∣∣∣ |x| − |0|
x − 0 + 1

∣∣∣∣ ⩽ ε .

(b) Théorèmes sur exemples.
2.1 x 7→ x sin(x) n’admet aucune limite en +∞.

Posons pour tout n ∈ N, un = 2πn et vn = π
2 + 2πn. Alors

lim
n→+∞

un = lim
n→+∞

vn = +∞.

Supposons que lim
x→+∞

x sin(x) existe dans R. Notons-la l. Alors par la caractérisation séquentielle
de la limite, on a

lim
n→+∞

f (un) = lim
n→+∞

f (vn) = l.

Or pour tout n ∈ N, f (un) = 0 et f (vn) = π
2 + 2πn. Donc

0 = lim
n→+∞

f (un) = l = lim
n→+∞

f (vn) = +∞.

Impossible. Donc x 7→ x sin(x) n’admet aucune limite en +∞.

2.2 Pour tout n ∈ N, il existe x ∈ [0 ; 1] tel que ln (1 + xn) = −x + 1.
Soient n ∈ N et f : x 7→ ln (1 + xn) + x − 1. La fonction f est définie et continue sur [0 ; 1]. De plus
f(0) = ln (1)−1 = −1 < 0 et f(1) = ln (2) > 0. Donc par le théorème des valeurs intermédiaires,
il existe (au moins) un réel x ∈ [0 ; 1] (et même dans ]0 ; 1[).

2.3 Pour tout n ∈ N et tout x ∈ R, il existe α ∈ R tel que (x + 3)n − xn = 3nαn−1.
Soit n ∈ N. On pose f : x 7→ xn. Soit x ∈ R. Alors la fonction f est continue sur [x ; x + 3] et dérivable
sur ]x ; x + 3[. Donc par l’identité des accroissements finis,

∃α (qui dépend de x) ∈ ]x ; x + 3[ ⊆ R, f(x + 3) − f(x) = f ′ (α) (x + 3 − x) .

Ainsi, pour tout x ∈ R, il existe α ∈ R tel que

(x + 3)n − xn = 3nαn−1.
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2.4 Pour tout x ∈ R∗
+, ln

(
x+1

x

)
⩽ 1

x .
Soit x ∈ R∗

+. La fonction ln est continue sur [x ; x + 1] ⊆ R∗
+ et dérivable sur ]x ; x + 1[. Donc par le

théorème des accroissements finis,

∃t ∈ ]x ; x + 1[ , |ln (x + 1) − ln(x)| ⩽
∣∣ln′(t)

∣∣ |x + 1 − x| =
∣∣∣∣1
t

∣∣∣∣ .

Pour tout t ∈ ]x ; x + 1[, on a
0 <

1
x + 1 ⩽ ln′(t) = 1

t
⩽

1
x

Donc
ln (x + 1) − ln (x) = |ln (x + 1) − ln (x)| ⩽

∣∣∣∣1
t

∣∣∣∣ = 1
t
⩽

1
x

.

Conclusion, pour tout x ∈ R∗
+,

ln
Å

x + 1
x

ã
⩽

1
x

.

2.5 La fonction x 7→ x3 esin(100x)

x+3 est bornée sur [0 ; 1].
Soit f : x 7→ x3 esin(100x)

x+3 est définie et même continue sur R \ {−3}, notamment f est continue sur le
segment [0 ; 1] ⊆ R \ {−3}. Donc par le théorème des bornes atteintes f est bornée (et atteint
ses bornes) sur [0 ; 1].

2.6 lim
x→0
x ̸=0

x sin
Å 1

x

ã
= 0.

Pour tout x ∈ R∗, on a
−1 ⩽ sin

Å 1
x

ã
⩽ 1.

Donc pour tout x ∈ R∗,
−x ⩽ x sin

Å 1
x

ã
⩽ x.

Or lim
x→0
x ̸=0

x = lim
x→0
x̸=0

−x = 0. Donc par le théorème d’encadrement, on en déduit que lim
x→0
x ̸=0

x sin
Å 1

x

ã
=

0.

2.7 Pour tout y ∈ ]−1 ; 0[, il existe x ∈ ]−1 ; 1[ tel que arcsin (y + 1) = arcsin (y) + 1√
1−x2 .

Soit y ∈ ]−1 ; 0[ ⊆ [−1 ; 1]. Alors y + 1 ∈ ]0 ; 1[ ⊆ [−1 ; 1] et donc [y ; y + 1] ⊆ [−1 ; 1]. La fonction
arcsin est donc continue sur [y ; y + 1], dérivable sur ]y ; y + 1[. Par l’identité des accroissements
finis, on en déduit qu’il existe x ∈ ]y ; y + 1[ ⊆ ]−1 ; 1[ tel que

arcsin (y + 1) − arcsin (y) = arcsin′(x) (y + 1 − y) ⇔ arcsin (y + 1) = arcsin (y) + 1√
1 − x2

.

2.8 Pour tout n ∈ N, n ⩾ 2, il existe un unique x ∈ [1 ; +∞[ tel que xn = x + 1.
Soient n ∈ N et f : x 7→ xn−x−1. La fonction f est dérivable sur R et pour tout x ∈ R, f ′(x) = nxn−1−
1. Donc pour tout x > 1, f ′(x) > 0. Donc f est strictement croissante sur I = [1 ; +∞[. De plus f est
continue sur I. Donc par le théorème de la bijection, on a J = f (I) = [f(1) ; limx→+∞ f(x)[ =
[−1 ; +∞[ et puisque 0 ∈ J , on en déduit qu’il existe un unique x ∈ I = [1 ; +∞[ tel que f(x) = 0 i.e.
tel que xn = x + 1.

2.9 La fonction x 7→ ch
Ä

cos(x)
ln(x)

ä
admet un maximum sur [2 ; 3].

Soit f : x 7→ ch
Ä

cos(x)
ln(x)

ä
. La fonction f est définie sur ]0 ; 1[ ∪ ]1 ; +∞[, notamment sur le segment

[2 ; 3]. La fonction f est continue sur son domaine de définition en tant que composée de fonctions qui
le sont. Donc f est continue sur le segment [2 ; 3]. Donc par le théorème des bornes atteintes, f
est bornée sur [2 ; 3] et atteint ses bornes et donc elle admet notamment un maximum sur [2 ; 3].

3/11



Mathématiques PTSI, IntEnt16 Cor 2025-2026

2.10 lim
x→0
x ̸=0

x

õ 1
x

û
= 0.

Pour tout x ̸= 0, on a
1
x

− 1 ⩽
õ 1

x

û
⩽

1
x

.

Donc, pour tout x > 0

∀x > 0, 1 − x ⩽ x

õ 1
x

û
⩽ 1 et ∀x < 0, 1 − x ⩾ x

õ 1
x

û
⩾ 1.

Par conséquent, pour tout x ∈ R∗,
0 ⩽

∣∣∣∣x õ 1
x

û
− 1

∣∣∣∣ ⩽ |x|

Or lim
x→0
x ̸=0

|x| = 0. Donc par le théorème d’encadrement lim
x→0
x ̸=0

∣∣∣∣xõ 1
x

û
− 1

∣∣∣∣ = 0 i.e.

lim
x→0
x ̸=0

x

õ 1
x

û
= 1.

3. Montrer qu’une fonction est lipschitzienne.
3.1 La fonction arccos est dérivable sur I =

[
− 1

2 ; 1
2
]

et pour tout x ∈ I,

arccos′(x) = −1√
1 − x2

.

Or pour tout x ∈ I, 0 ⩽ x2 ⩽ 1
4 donc

√
1 − x2 ⩾

»
1 − 1

4 =
√

3
2 . Ainsi, pour tout x ∈ I,

−1
√

3
2

⩽ arccos′(x) ⩽ 0 ⇒ |arccos′(x)| ⩽ 2
√

3
3 .

Soit (x, y) ∈ I2, x ̸= y. La fonction arccos est continue sur [x; y] ou [y; x] et dérivable sur ]x ; y[ ou ]y ; x[.
Donc par le théorème des accroissements finis,

∃t ∈ ]x; y[ (ou ]y; x[), |arccos(x) − arccos(y)| = |arccos′(t)| |x − y| .

Puisque t ∈ ]x; y[ ⊆ I, on a |arccos′(t)| ⩽ 2
√

3
3 . Donc

|arccos(x) − arccos(y)| ⩽ 2
√

3
3 |x − y| ,

encore reste vrai si x = y. Conclusion,

la fonction arccos est 2
√

3
3 -lipschitzienne sur I =

ï
−1

2 ; 1
2

ò
.

3.2 La fonction arctan est dérivable sur R et pour tout x ∈ R, on a

arctan′(x) = 1
1 + x2 .

Or pour tout x ∈ R, 1 + x2 ⩾ 1 donc
0 ⩽ arctan′(x) ⩽ 1.

Soit (x, y) ∈ I2, x ̸= y. La fonction arctan est continue sur [x; y] ou [y; x] et dérivable sur ]x; y[ ou ]y; x[.
Donc par le théorème des accroissements finis,

∃t ∈ ]x; y[ (ou ]y; x[), |arctan(x) − arctan(y)| = |arctan′(t)| |x − y| ⩽ |x − y| ,

ce qui reste vrai si x = y. Conclusion,

La fonction arctan est 1-lipschitzienne sur R.
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3.3 La fonction f est définie et même dérivable sur [1 ; +∞[ et pour tout x ⩾ 1, on a

f ′(x) = 1
x2 e− 1

x .

Or pour tout x ⩾ 1, 0 < 1
x2 ⩽ 1 et 0 < e− 1

x ⩽ 1 donc

∀x > 1, 0 ⩽ f ′(x) ⩽ 1.

Soit (x, y) ∈ I2, x ̸= y. La fonction f est continue sur [x; y] ou [y; x] et dérivable sur ]x; y[ ou ]y; x[. Donc
par le théorème des accroissements finis,

∃t ∈ ]x; y[ (ou ]y; x[), |f(x) − f(y)| = |f ′(t)| |x − y| ⩽ |x − y| ,

ce qui reste vrai si x = y. Conclusion,

La fonction f est 1-lipschitzienne sur [1 ; +∞[.

3.4 La fonction tan est définie et même dérivable sur I =
[ 3π

4 ; 5π
4
]

et pour tout x ∈ I, on a tan′(x) = 1+tan2(x).
Or par croissance de la fonction tangente sur I, pour tout x ∈ I,

−1 = tan
Å3π

4

ã
⩽ tan(x) ⩽ tan

Å5π

4

ã
= 1 ⇒ 0 ⩽ tan2(x) ⩽ 1

⇒ 0 ⩽ tan′(x) = 1 + tan2(x) ⩽ 2.

Donc
∀x ∈ I, |tan′(x)| ⩽ 2.

Soit (x, y) ∈ I2, x ̸= y. La fonction tan est continue sur [x; y] ou [y; x] et dérivable sur ]x; y[ ou ]y; x[. Donc
par le théorème des accroissements finis,

∃t ∈ ]x; y[ (ou ]y; x[), |tan(x) − tan(y)| = |tan′(t)| |x − y| ⩽ 2 |x − y| ,

ce qui reste vrai si x = y. Conclusion,

La fonction tan est 2-lipschitzienne sur I =
ï3π

4 ; 5π

4

ò
.

3.5 La fonction f : x 7→ ln (5x + 2) est définie et même dérivable sur
]
− 2

5 ; +∞
[

donc notamment sur [0 ; 1].
De plus,

∀x ∈ [0 ; 1] , f ′(x) = 5
5x + 2 .

Or pour tout x ∈ [0 ; 1], 2 ⩽ 5x + 2 ⩽ 7 donc 5
7 ⩽ 5

5x+2 ⩽ 5
2 . Ainsi,

∀x ∈ [0 ; 1] , |f ′(x)| ⩽ 5
2 .

Soit (x, y) ∈ [0 ; 1]2, x ̸= y. La fonction f est continue sur [x ; y] ou [x ; y] et dérivable sur ]x ; y[ ou ]y ; x[.
Donc par le théorème des accroissements finis,

∃t ∈ ]x; y[ (ou ]y; x[), |f(x) − f(y)| = |f ′(t)| |x − y| ⩽ 5
2 |x − y| ,

ce qui reste vrai si x = y. Conclusion,

La fonction f est 5
2-lipschitzienne sur [0 ; 1].

4. Prolongement de classe C 1.
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4.1 On observe que

∀x ∈ R, f(x) =


x3/2 si x > 0
0 si x = 0
(−x)3/2 si x < 0.

Donc
lim
x→0
x>0

f(x) = lim
x→0
x<0

f(x) = f(0) = 0.

Donc f est continue sur R. De plus f est C 1 sur R∗ et

∀x ∈ R∗, f ′(x) =
®

3
2
√

x si x > 0
− 3

2
√

−x si x < 0.

Donc on a
lim
x→0
x>0

f ′(x) = lim
x→0
x<0

f ′(x) = 0.

Ainsi,
• f est continue sur R.
• f est C 1 sur R∗.
• lim

x→0
x ̸=0

f ′(x) existe dans R et vaut 0.

Donc, par le théorème de prolongement C 1, on en déduit que

La fonction f est C 1 en 0 et donc sur R et f ′(0) = 0.

4.2 On a lim
x→0
x>0

1
x4 = lim

x→0
x<0

1
x4 = +∞. Donc

lim
x→0
x>0

f(x) = lim
x→0
x<0

f(x) = e−∞ = 0 = f(0).

Donc f est continue sur R. De plus f est C 1 sur R∗ et

∀x ∈ R∗, f ′(x) = 4
x5 e− 1

x4 .

Posons u = 1
x4 . Par croissance comparée, on a lim

u→+∞
u2 e−u = 0 donc

lim
x→0
x ̸=0

4
x5 e− 1

x4 = lim
x→0
x ̸=0

4x3 × 1
x8 e− 1

x4 = 0 × 0.

Ainsi,
lim
x→0
x̸=0

f ′(x) = 0.

Donc
• f est continue sur R.
• f est C 1 sur R∗.
• lim

x→0
x ̸=0

f ′(x) existe dans R et vaut 0.

Par le théorème de prolongement C 1, on en déduit que

La fonction f est C 1 en 0 et donc sur R et f ′(0) = 0.
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4.3 On sait que sh(x) ∼
x→0

x. Donc
lim
x→0
x ̸=0

f(x) = 1 = f(0).

Donc f est continue sur R. De plus f est C 1 sur R∗ et

∀x ∈ R∗, f ′(x) = ch(x)x − sh(x)
x2 .

Donc
f ′(x) =

x→0

(1 + o (x)) x − x + o
(
x2)

x2 =
x→0

x + o
(
x2) − x + o

(
x2)

x2 =
x→0

o(1).

Donc
lim
x→0
x̸=0

f ′(x) = 0.

Ainsi,
• f est continue sur R.
• f est C 1 sur R∗.
• lim

x→0
x ̸=0

f ′(x) existe dans R et vaut 0.

Par le théorème de prolongement C 1, on en déduit que

La fonction f est C 1 en 0 et donc sur R et f ′(0) = 0.

4.4 On a

∀x ∈ R, f(x) =


e− 1

x si x > 0
0 si x = 0
e 1

x si x < 0.

Donc
lim
x→0
x>0

f(x) = lim
x→0
x<0

f(x) = e−∞ = 0 = f(0).

Donc f est continue sur R. De plus f est C 1 sur R∗ et

∀x ∈ R∗, f ′(x) =
®

1
x2 e− 1

x si x > 0
− 1

x2 e 1
x si x < 0.

Posons u = 1
x . Par croissance comparée, on a lim

u→+∞
u2 e−u = 0 donc

lim
x→0
x>0

1
x2 e 1

x = lim
u→+∞

u2 e−u = 0.

Et de même,
lim
x→0
x<0

− 1
x2 e 1

x = lim
u→−∞

−u2 eu = 0.

Ainsi,
lim
x→0
x ̸=0

f ′(x) = 0.

Donc
• f est continue sur R.
• f est C 1 sur R∗.
• lim

x→0
x ̸=0

f ′(x) existe dans R et vaut 0.

Par le théorème de prolongement C 1, on en déduit que

La fonction f est C 1 en 0 et donc sur R et f ′(0) = 0.
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4.5 On a ch(x) − 1 ∼
x→0

x2

2 . Donc

f(x) ∼
x→0

x2

2√
x

= x3/2

2 −→
x→0
x>0

0.

D’où lim
x→0
x>0

f(x) = 0 = f(0). Donc f est continue sur R+. De plus f est C 1 sur R∗
+ et

∀x ∈ R∗
+, f ′(x) =

sh(x)
√

x − ch(x)−1
2

√
x

x
= 2x sh(x) − (ch(x) − 1)

2x3/2 .

Donc

f ′(x) =
x→0

2x2 + o
(
x2) − x2

2
2x3/2 =

x→0

3x2

2 + o
(
x2)

2x3/2 ∼
x→0

3
√

x

4 .

Donc
lim
x→0
x ̸=0

f ′(x) = lim
x→0
x ̸=0

3
√

x

4 = 0.

Ainsi,
• f est continue sur R.
• f est C 1 sur R∗.
• lim

x→0
x ̸=0

f ′(x) existe dans R et vaut 0.

Par le théorème de prolongement C 1, on en déduit que

La fonction f est C 1 en 0 et donc sur R et f ′(0) = 0.

8/11



Mathématiques PTSI, IntEnt16 Cor 2025-2026

5. Compositions de développements limités.
5.1 On a

cos (2x) + sin (3x) =
x→0

1 − 4x2

2 + o
(
x2) + 3x + o

(
x2) =

x→0
1 + 3x − 2x2 + o

(
x2) .

De plus 1
1+u =

u→0
1 − u + u2 + o

(
u2). Posons u(x) =

x→0
3x − 2x2 + o

(
x2). Alors

• u(x) −→
x→0

0.

• u2(x) =
x→0

(
3x − 2x2 + o

(
x2)) (3x − 2x2 + o

(
x2)) =

x→0
9x2 + o

(
x2).

• o
(
u2(x)

)
=

x→0
o
(
x2).

Ainsi,

f(x) = 1
cos (2x) + sin (3x) =

x→0

1
1 + u(x) =

x→0
1 −

(
3x − 2x2 + o

(
x2)) + 9x2 + o

(
x2) + o

(
x2) .

Conclusion,
f(x) =

x→0
1 − 3x + 11x2 + o

(
x2) .

5.2 On a
3 + e−x =

x→0
3 + 1 − x + x2

2 + o
(
x2) =

x→0
4
Å

1 − x

4 + x2

8 + o
(
x2)ã .

De plus, 1
1+u =

u→0
1 − u + u2 + o

(
u2). Posons u(x) =

x→0
− x

4 + x2

8 + o
(
x2). Alors

• u(x) −→
x→0

0.

• u2(x) =
x→0

Ä
− x

4 + x2

8 + o
(
x2)ä Ä− x

4 + x2

8 + o
(
x2)ä =

x→0
x2

16 + o
(
x2).

• o
(
u2(x)

)
=

x→0
o
(
x2).

Ainsi,

f(x) = x

3 + e−x
=

x→0

x

4
1

1 + u(x) =
x→0

x

4

ï
1 −
Å

−x

4 + x2

8 + o
(
x2)ã+ x2

16 + o
(
x2) + o

(
x2)ò .

Conclusion,

f(x) =
x→0

x

4 + x2

16 − x3

64 + o
(
x3) .

5.3 Posons h = x − 1. On sait (rappel : les formules des fonctions hyperboliques s’obtiennent à partir des
formules trigonométriques en remplaçant cos par ch et sin par i sh) que pour tout h ∈ R,

sh (1 + h) = sh (1) ch (h) + ch (1) sh (h) .

Donc

sh (1 + h) =
h→0

sh (1)
Å

1 + h2

2 + o
(
h2)ã+ ch (1)

(
h + o

(
h2)) =

h→0
sh (1) + ch (1) h + sh(1)

2 h2 + o
(
h2) .

Par suite,

f (1 + h) = esh(1+h) =
h→0

esh(1)+ch(1)h+ sh(1)
2 h2+o(h2) =

h→0
esh(1) ech(1)h+ sh(1)

2 h2+o(h2) .

De plus, eu =
u→0

1 + u + u2

2 + o
(
u2). Posons u(h) =

h→0
ch (1) h + sh(1)

2 h2 + o
(
h2). Alors

• u(h) −→
h→0

0.

• u2(h) =
h→0

Ä
ch (1) h + sh(1)

2 h2 + o
(
h2)ä Äch (1) h + sh(1)

2 h2 + o
(
h2)ä =

h→0
ch2 (1) h2 + o

(
h2). Donc

u2(h)
2 =

h→0

ch2 (1)
2 h2 + o

(
h2) .
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• o
(
u2(h)

)
=

h→0
o
(
h2).

Par conséquent,

f(1 + h) =
h→0

esh(1) eu(h) =
h→0

esh(1)
ñ
1 + ch (1) h + sh(1)

2 h2 + o
(
h2) + ch2 (1)

2 h2 + o
(
h2) + o

(
h2)ô .

Ainsi,

f(1 + h) =
h→0

esh(1) + esh(1) ch (1) h + esh(1) sh(1) + ch2 (1)
2 h2 + o

(
h2) .

Conclusion,

f(x) =
x→1

esh(1) + esh(1) ch (1) (x − 1) + esh(1) sh(1) + ch2 (1)
2 (x − 1)2 + o

Ä
(x − 1)2ä

.

5.4 Pour tout x ∈
[
− 1

2 ; +∞
[
, on a f(x) = e

ln (1 + 2x)
x . Donc au voisinage de 0, on a

f(x) =
x→0

e
2x− 4x2

2 + 8x3
3 − 16x4

4 +o(x4)
x =

x→0
e2−2x+ 8x2

3 −4x3+o(x3) =
x→0

e2 e−2x+ 8x2
3 −4x3+o(x3)

Or eu = 1 + u + u2

2 + u3

6 + o
(
u3). Posons u(x) =

x→0
−2x + 8x2

3 − 4x3 + o
(
x3). Alors,

• u(x) −→
x→0

0.

• De plus,

u(x)2 =
x→0

Å
−2x + 8x2

3 − 4x3 + o
(
x3)ãÅ−2x + 8x2

3 − 4x3 + o
(
x3)ã

=
x→0

4x2 − 16x3

3 + o
(
x3) − 16x3

3 + o
(
x3) + o

(
x3)

=
x→0

4x2 − 32x3

3 + o
(
x3) .

• Puisque u(x) ∼
x→0

−2x, alors u(x)3 ∼
x→0

−8x3 et donc u(x)3 =
x→0

−8x3 + o
(
x3).

• Enfin, o (u(x)) =
x→0

o
(
−8x3 + o

(
x3)) =

x→0
o
(
x3).

D’où,

f(x) =
x→0

e2
Å

1 + u(x) + u(x)2

2 + u(x)3

6 + o
(
u(x)3)ã

=
x→0

e2(1 − 2x + 8x2

3 −4x3 +o
(
x3)

+1
2[4x2 − 32x3

3 +o
(
x3)]

+1
6 [−8x3 +o

(
x3)]

+o
(
u(x)3))

=
x→0

e2 −2 e2 x + 14 e2

3 x2 − 32 e2

3 x3 + o
(
x3)

Conclusion,

f(x) =
x→0

e2 −2 e2 x + 14 e2

3 x2 − 32 e2

3 x3 + o
(
x3) .

5.5 On observe qu’au voisinage de 0,

1 +
√

1 + x +
√

1 − x =
x→0

1 + 1 + x

2 + (1/2)(−1/2)
2 x2 + (1/2)(−1/2)(−3/2)

6 x3 + o
(
x3)

+ 1 − x

2 + (1/2)(−1/2)
2 x2 − (1/2)(−1/2)(−3/2)

6 x3 + o
(
x3)

=
x→0

3 − x2

4 + o
(
x3)
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Par suite,
f(x) =

x→0

1
3 − x2

4 + o (x3)
=

x→0

1
3

1
1 − x2

12 + o (x3)
.

On a 1
1−u =

u→0
1 + u + u2 + o

(
u2). Posons u(x) =

x→0
x2

12 + o
(
x3). Alors,

• u(x) −→
x→0

0.

• De plus

u(x)2 =
x→0

Å
x2

12 + o
(
x3)ãÅx2

12 + o
(
x3)ã

=
x→0

o
(
x3) .

• Et o
(
u(x)2) =

x→0
o
(
o
(
x3)) =

x→0
o
(
x3).

Dès lors,

f(x) =
x→0

1
3

Å
1 + x2

12 + o
(
x3) + o

(
x3) + o

(
x3)ã =

x→0
1 + x2

12 + o
(
x3) .

Conclusion,

f(x) =
x→0

1 + x2

12 + o
(
x3) .
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