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Correction de l’interrogation 16
d’entrainement
Continuité et dérivabilité

\. J

1. Restituer le cours.
1.1 Soit a € R, I un voisinage de a, f, g et h trois éléments de .% (I,R). On suppose que
o pour tout z € I, g(z) < f(z) < h(x),
o il existe | € R tel que lim g(z) = lim h(z) = 1.
T—ra r—a
Alors on a également lim f(z) = 1.
r—a
1.2 Soient a € R, | € R, I un voisinage de a et f : I — R. Alors les deux points suivants sont équivalents :
i. ilir}l flz)=1
ii. pour tout suite (u,),cy tendant vers a, on a (f (un)), oy qui tend vers I.

1.3 Soient (a,b) € R? et f une fonction continue sur le segment [a;b]. Alors, f est bornée sur [a;b] et atteint
ses bornes :
I(, B) € [a;b]Q, f(a@)=m= min_ f(¢) et f(8) = M = max f(t).
te€(a;b] t€la;b]

1.4 Soit (a,b) € R?, a < b. Soit f une fonction continue sur [a;b] et dérivable sur Ja; b[. Alors il existe ¢ € Ja; b]

tel que

1.5 Posons LO = lipschitzienne. Alors on obtient, & I’endroit puis & l'envers :
LOOL

2. (a) Définitions sur exemples.

2.1 x> /x est continue en 0 si et seulement si

Ve>0,3n>0,Vzel0;n, ’\/JE—\/@‘<5

2.2 sh est dérivable en 3 et sa dérivée vaut ch(3) si et seulement si

sh(xz) —sh(3
Ve>0,3n>0,Vze3—n;3+n\{3}, b(x)_;()—ch(3)‘<a

. sin(z) . .
2.3 lim ———= =1 si et seulement si

z—0 xT

x#0

sin(x)
Ve>0,3Inp>0, Ve e [—n;n]\{0}, —-1/<e

2.4 z — |x] est continue a droite en 5 si et seulement si

Ve>0,3I>0,Veeb;5+n], |lz]—|[5]|<e.

2.5 Soit n € N. 2" <« €” si et seulement si
r—+o0

x’ﬂ

e(l)

Ve>0,JAeRY, Vz € [4; o0,
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2.6 x > cos(z) n’admet pas de limite en +oo si et seulement si

VIeR, e >0, VAR, Jz € [A; +oo[, |cos(z)—1I|>c¢.

.1 . .
2.7 lim — = —oo si et seulement si
z—0
<0

VM eR, In >0, Va € [-n; 0],

8| =
N
<

2.8 f est bornée au voisinage de 400 si et seulement si
JAER, IM € Ry, V€ [A; +oof, |f(2)] < M.

Attention a bien mettre le M avant les x.

2.9 f est positive au voisinage de 0 si et seulement si

I >0, Veel-n;n, flz)=0.

2.10 x — |z| est dérivable & gauche en 0 et cette dérivée vaut —1 si et seulement si

lz[ = 10]

Ve >0, In >0, Va € [-n; 0], ~—0

l‘ga.

(b) Théorémes sur exemples.

2.1 x> zsin(z) n’admet aucune limite en +oc.
Posons pour tout n € N, u,, = 27n et v, = § + 27n. Alors

lim u, = lim v, =4o0.
n—-+oo n—-+o0o

Supposons que lirf rsin(x) existe dans R. Notons-la I. Alors par la caractérisation séquentielle
r—r+00

de la limite, on a
lim f(u,)= lim f(v,) =1L

n—-+4oo n—-+oo

Or pour tout n € N, f(u,) =0 et f(v,) = § + 27n. Donc

0= lim f(u,) =0l= lim f(v,)=+o0.

n—-+o0o n—-+oo

Impossible. Donc = +— xsin(x) n’admet aucune limite en +oo.

2.2 Pour tout n € N, il existe z € [0; 1] tel que In (1 +2") = —z + 1.
Soient n € Net f:x— In(1+2") + x — 1. La fonction f est définie et continue sur [0; 1]. De plus
f(0)=In(1)-1=—-1<0et f(1) =1n(2) > 0. Donc par le théoréme des valeurs intermédiaires,
il existe (au moins) un réel x € [0; 1] (et méme dans ]0; 1[).

2.3 Pour tout n € N et tout » € R, il existe o € R tel que (z +3)" — 2" = 3na™ L.

Soit n € N. On pose f : z — z™. Soit = € R. Alors la fonction f est continue sur [z;  + 3] et dérivable
sur |z ; « + 3[. Donc par I’identité des accroissements finis,

Ja (qui dépend de x) € lx; x+ 3[ C R, flx+3)— f(x)=f (a)(x+3—1).
Ainsi, pour tout z € R, il existe a € R tel que

(x+3)" — 2™ = 3na"" L.

2/
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2.5

2.6

2.7

2.8

2.9

Pour tout z € R, In (“"T“) < %
Soit x € R%.. La fonction In est continue sur [x; x 4+ 1] € R% et dérivable sur ]z ; x 4 1[. Donc par le
théoréme des accroissements finis,

1
e, x+1[, In(z+1) — In(z)| < [In'(¢)| |z +1 — 2| = ’t‘
Pour tout ¢t € Jz;  + 1[, on a
1 1 1
0< <In'(t) == <=
rz+1 w(t) t
Donc
1 1 1
In(z+1)—In(z)=|n(z+1) —In(x)] < ’t‘ =7 < =

Conclusion, pour tout = € R7,

ln(m+1> <l.
T X

3 _sin(100z) ,
£ est bornée sur [0; 1].

La fonction z — =73

. 3 esin(1002) o R . .
Soit f : &+ = —=— est définie et méme continue sur R\ {—3}, notamment f est continue sur le

segment [0; 1] € R\ {—3}. Donc par le théoréme des bornes atteintes f est bornée (et atteint
ses bornes) sur [0; 1].

1
lim z sin <7) =0.
x—0 x
x#0

Pour tout x € R*, on a
1
—1 <sin <7> < 1.
x
Donc pour tout x € R*,

1
—x < xsin (;) < x.

1
Or lim z = lim —z = 0. Donc par le théoréme d’encadrement, on en déduit que lim z sin (7> =
x—0 x—0 x—0 x

z#0 x#0 z#0

0.

Pour tout y € |—1; 0], il existe x € |—1; 1] tel que arcsin (y + 1) = arcsin (y) + ﬁ

Soit y € |-1;0[ C [~1;1]. Alors y+1 € ]0; 1[ C [-1; 1] et donc [y; y + 1] C [-1; 1]. La fonction
arcsin est donc continue sur [y; y + 1], dérivable sur |y; y + 1[. Par I’identité des accroissements
finis, on en déduit qu'il existe x € Jy; y + 1[ C]—1; 1] tel que

1
V1—22

arcsin (y + 1) — arcsin (y) = arcsin’(z) (y + 1 — y) & arcsin (y + 1) = arcsin (y) +

Pour tout n € N, n > 2, il existe un unique z € [1; +oo[ tel que 2™ =z + 1.

Soient n € Net f: x — 2" —x—1. La fonction f est dérivable sur R et pour tout z € R, f’(x) = nz" -
1. Done pour tout z > 1, f/(x) > 0. Donc f est strictement croissante sur I = [1; 4o00[. De plus f est
continue sur I. Donc par le théoréme de la bijection, on a J = f(I) = [f(1); lim,— 400 f(2)] =
[—1; +oo[ et puisque 0 € J, on en déduit qu’il existe un unique x € I = [1; +o0of tel que f(z) =0 i.e.
tel que ™ = x + 1.

La fonction x — ch (Cl‘;s((f))> admet un maximum sur [2; 3].

Soit f : x + ch (lels((;))) La fonction f est définie sur ]0; 1] U]1; +o0o[, notamment sur le segment
[2; 3]. La fonction f est continue sur son domaine de définition en tant que composée de fonctions qui
le sont. Donc f est continue sur le segment [2; 3]. Donc par le théoréme des bornes atteintes, f

est bornée sur [2; 3] et atteint ses bornes et donc elle admet notamment un maximum sur [2; 3].
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2.10 lim = LEJ =0.
x—0 €T
z#0

Pour tout = # 0, on a

Donc, pour tout z > 0
Va >0, 1—w<x{fJ<1 et Vo <0, 1—x>x{—J21.

Par conséquent, pour tout x € R*,

1

x LiJ — 1‘ < |z

. P . 1 .

Or hn}J |z| = 0. Donc par le théoréme d’encadrement hm0 z|—|—1=0ie
z— xT

r—r
z#0 x#0
1
lim = {7J =1
z—0 x
x#0
3. Montrer qu’une fonction est lipschitzienne.
3.1 La fonction arccos est dérivable sur I = [—% ; %] et pour tout = € I,
, -1
arccos’ (x) =

3.2

V1—a?
Or pour tout z € I, 0 < 22 < i donc V1 —x2 > wl—i: ? Ainsi, pour tout x € I,

<25

< arccos’(z) <0 = |arccos’ ()| 3

S|
Q| =

Soit (x,y) € I?, x # y. La fonction arccos est continue sur [x;y] ou [y; z] et dérivable sur ]z ; y[ ou |y ; =[.

Donc par le théoréme des accroissements finis,
3t € Jz; y[ (ou Jy; ), larccos(x) — arccos(y)| = |arccos’(t)| |z — y| .
Puisque ¢ € Jz;y[ C I, on a |arccos’(t)] < % Donc
2v3
3

|arccos(z) — arccos(y)| < |z — vy,

encore reste vrai si x = y. Conclusion,

3 1 1
la fonction arccos est -lipschitzienne sur I = { } .

303

La fonction arctan est dérivable sur R et pour tout z € R, on a
arctan’(x) = !
1422

Or pour tout € R, 1 4+ 22 > 1 donc
0 < arctan’(z) < 1.

Soit (x,y) € I?, x # y. La fonction arctan est continue sur [z;y] ou [y; 2] et dérivable sur |z;y|
Donc par le théoreme des accroissements finis,

3t € |z;y[ (ou Jy; z]), larctan(x) — arctan(y)| = |arctan’ ()| |z — y| < |z — y|,

ce qui reste vrai si x = y. Conclusion,

‘ La fonction arctan est 1-lipschitzienne sur R. ‘

4/
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3.3 La fonction f est définie et méme dérivable sur [1; +oo[ et pour tout > 1, on a

fl@) = et

T

Orpourtoutz>1,0<x—12Slet0<e’%gldonc

Vo > 1, 0< fl(z) < 1.

Soit (z,y) € I?, z # y. La fonction f est continue sur [z;y] ou [y; z] et dérivable sur ]z;y[ ou Jy; z[. Donc
par le théoréme des accroissements finis,

3t € Jusy[(ou]ysz),  [f(@) = fWI=1 Oz -yl < |z -yl

ce qui reste vrai si x = y. Conclusion,

‘La fonction f est 1-lipschitzienne sur [1; +oo[.‘

3 . 5w

3.4 La fonction tan est définie et méme dérivable sur I = [2F; 2T] et pour tout € I, on a tan’(z) = 1+tan®(z).
Or par croissance de la fonction tangente sur I, pour tout = € I,

-1 =ta (31) <
= n 1 <

Donc

tan(z) < tan (%T) =1 = 0 < tan?(z) < 1

= 0 < tan’(z) = 1 + tan?(z) < 2.

Ve el, [tan’(z)| < 2.

Soit (z,y) € I?, # # y. La fonction tan est continue sur [x;y] ou [y; z] et dérivable sur |x;y[ ou ]y; z[. Donc
par le théoreme des accroissements finis,

3t € Jzsy[(ou Jy;z]),  |tan(z) — tan(y)| = [tan’(t)| |z —y| < 2]z —y],

ce qui reste vrai si x = y. Conclusion,

La fonction tan est 2-lipschitzienne sur I = {

37T.57r}
47 4

3.5 La fonction f : 2 — In (5z + 2) est définie et méme dérivable sur | —2; 4+00[ donc notamment sur [0; 1].

De plus,

Or pour tout z € [0; 1], 2 <

5
vre0:1],  flz) = —
T x4+ 2
5z +2 < 7 donc 2 < 5225 < 5. Ainsi,
, 5
Vo € [0; 1], If@)] <35

Soit (x,y) € [0; 1]2, x # y. La fonction f est continue sur [z; y] ou [z ; y] et dérivable sur |z ; y[ ou Jy; z].
Donc par le théoreme des accroissements finis,

3t € Jusy[(ouJy; =), [f(z) = fWI =1/ Oz -yl < glx -yl

ce qui reste vrai si x = y. Conclusion,

4. Prolongement de classe ¢'.

5
La fonction f est i—lipschitzienne sur [0; 1].
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4.1

4.2

On observe que

x3/2 siz >0
Vr € R, flx)y=<0 siz=0
(—m)g/2 siz <O.
Donc
lim f(z) = lim f(z) = f(0) = 0.
z—0 z—0
>0 z<0

Donc f est continue sur R. De plus f est €' sur R* et

3 i 0
V"EER*, f/(x):{z\j/5 Ss1x >

—35v—x siz <.

Donc on a
lim f'(z) = lim f'(z) = 0.
z—0 z—0
x>0 <0

Ainsi,

e f est continue sur R.
o f est €' sur R*.
o lim f'(z) existe dans R et vaut 0.
x—0
z#0
Donc, par le théoréme de prolongement €', on en déduit que

La fonction f est €* en 0 et donc sur R et f'(0) = 0. ‘

1 1
On a lim — = lim — = foo. Donc
x—0 x—0
>0 <0

lim f(z) = lim f(z) =™ =0 = (0).
x>0 <0

Donc f est continue sur R. De plus f est €' sur R* et

4 _a
Vz € R*, flx) = =e =",
T
Posons u = 2. Par croissance comparée, on a lim w?e™* = 0 donc
z u—r+00
o4 a1 . 1 _ 1
lim — e 37 = lim 423 x — e 27 =0 x 0.
w—ﬂ)xs x—0 x8
z#0 z#0
Ainsi,
lim f'(z) = 0.
z%Of( )
z#0
Donc

e f est continue sur R.
e f est €' sur R*.
o lim f'(z) existe dans R et vaut 0.
z—0
z#0
Par le théoréme de prolongement ¢!, on en déduit que

La fonction f est €' en 0 et donc sur R et f/(0) = 0.
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4.3 On sait que sh(z) ~ z. Donc

44

z—0

lim f(z) = 1= f(0).

z#0

Donc f est continue sur R. De plus f est €* sur R* et

vz € R*, F(z) = w

X
Donc
f/(x) _ (1+O($))LL'—:E+O({I,’2) _ $+O(I2)—QE+O($2) _ 0(1)
z—0 $2 x—0 x2 x—0

Donc

lim f'(z) =0

x—0

z#0
Ainsi,

e f est continue sur R.
e f est €' sur R*.
o lim f'(z) existe dans R et vaut 0.
z—0
z#0
Par le théoréme de prolongement %!, on en déduit que

La fonction f est €' en 0 et donc sur R et f(0) = 0. ‘

On a )
ez siz>0
Ve € R, flx)y=<0 siz=0
er sixz <.
Donc
lim f(z) = lim f(z) = ¢ =0 = f(0).
x>0 x<0

Donc f est continue sur R. De plus f est € sur R* et
vz eR*,  fl(z)=

Posons u = % Par croissance comparée, on a lim u?e™" = 0 donc

u——+o0
.1 . _
lim —e* = lim uw?e * =0.
z—0 ,’L‘2 u—+00
x>0
Et de méme,
. 1 .
lim ——e* = lim —u?e*=0.
x—0 ;C2 U—r—00
<0
Ainsi,
lim f/(x) = 0.
x—)Of( )
z#0
Donc

e f est continue sur R.
e f est €' sur R*.

o lim f'(z) existe dans R et vaut 0.
z—0
z#0
Par le théoréme de prolongement %!, on en déduit que

La fonction f est €' en 0 et donc sur R et f/(0) = 0.

7]
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45 Onach(zr)—1 ~ "LQ—Q Donc

z—0
L; 23/2
&%= 5"
D’ou lirr}) f(z) =0 = f(0). Donc f est continue sur R. De plus f est €' sur R% et
r—r

x>0

sh(z _ ch(z)-1 _ B
VeeRL,  fla)= h(@)ve — 5 _ 2ash(z) — (chz) —1)

x 2x3/2
Donc ) )
o) = 20 +o(2?) -5 3 4o0(2?) 3z
r £—0 223/2 20 223/2 z—0 4
Donc NG
3z
. ! _ . —
Jim £(@) = Jimy == =0.
z#0 z#0
Ainsi,

e f est continue sur R.
e f est €' sur R*.
o lim f'(z) existe dans R et vaut 0.
x—0
x#0
Par le théoréme de prolongement %!, on en déduit que

La fonction f est €' en 0 et donc sur R et f/(0) = 0.
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5. Compositions de développements limités.
5.1 On a
42

cos (2z) + sin (3x) 301—7+0(.’L’2)+3.’L‘+0(l‘2) 301—&-3:10—2952—&—0(302).

De plus IJ%U = 1 —u+u®+ o (u?). Posons u(x) = 3z —2z* + o (2?). Alors
uU—r T—r

o u(x) — 0.

z—0

o u?(7) o (3 — 22 + 0 (2?)) (3z — 222 + 0 (2?)) o 922 4 o0 (2?).

e o(u?(z)) o0 (z2).
Ainsi,

— ! _ L 1 _ 9.2 2 2 2 2
flz) = c0s (22) + sin (32) =50 1+ u(z) 250 (3z — 22° + 0 (27)) + 92° + 0 (2°) + 0 (27) .
Conclusion,
f(z) o 1 -3z + 1122 +o (zz) .
52 On a

—x 2 T 3172 2
3+e® = 3+1—x+?+0( %) = 4(1——+f—&-0(m ))

z—0 z—0 4 8
De plus, m o 1 —u+u? + o (u?). Posons u(x) o -3+ %2 +o0(2?). Alors

o u(zr) — 0.
z—0

. U2(x)mjo( %4—%4— (CC2)> (—%4—%4—0(%‘2)) r30%+0(1‘2).
c 0 (@) = o(a?)
Ainsi

T T 1 T T T
f(z) = Py wiozmmioz {1—<—Z—|—§+o(m2))+ﬁ+o( 2)—|—0(z2)}.

Conclusion,

5.3 Posons h = x — 1. On sait (rappel : les formules des fonctions hyperboliques s’obtiennent d partir des
formules trigonométriques en remplagant cos par ch et sin par ish) que pour tout h € R,

sh (14 h) =sh(1)ch(h)+ch(1)sh(h).

Donc

sh(1+h) o sh (1) (1 + h; +0(h2)> +ch(1) (h+o0(h*) = sh(1)+ch(1)h+ ¥h2+0(h2).

— h—0

Par suite,

FO+h) = h(1+h) _ esh(1)+ch(1)h+¥h2+o(h2) _ esh(l)ech(1)h+¥h2+o(h2).

h—0 h—0

w u? _ sh(1)
De plus, ¢ = 1+u+ % +o0 (u?). Posons u(h) o ch (1) h + =52 h* 4 o (h?). Alors

. u2<h>

(ch( Yho+ U2 4o (k) (ch (1) h+ 2R + 0 (h2)) = ch® (1) h? + o (h?). Donc

h—0 h—0
U2(h) ch’ (1) 2 2
2 hs0 2 R+ o (h%).

o fi]
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 o(u*(h)) 0 © (h?).

Par conséquent,

_ osh(l) qu(h) _  _sh(1 sh(1) 5 2 ch? (1) 2 2 2
f+h) = eMWet® = W1+ ch(1)h+ 0% +0(h?) + h? +o (k) +o(h%)].
Ainsi,
s s anny Sh(1) +ch? (1
f(1+h) 0 © b et ch (1) b+ b %iﬂ +0(h?).
Conclusion,
b1 sh(1) +ch? (1
f(.'L') mil esh(l) +esh(1) Ch(l) (l‘ _ 1) + esh(l) 5 ( ) —"_20 ( ) (LU _ 1)2 +o ((.T o 1)2) ]
In (1 + 2x)
5.4 Pour tout x € [—%; —i—oo[, ona f(z)=e x . Donc au voisinage de 0, on a
Ifi 823 _ 162% of 22
f($> _ ez 4z~ 4 8 : 162 +( ) _ 62_2$+%_4I3+0(I3) _ e2e_2w+%_4is+o(ggs)
z—0 x—0 x—0

Ore*=1+u+ “72 + %3 + o0 (u®). Posons u(x) = —2z + % — 423 + o (2%). Alors,

T—
o u(zr) — 0.
z—0

e De plus,
822 82
2 _ 3 3 3 3
u(x) o (—Zx—f— = — 4z + o (x )) <—2x+? — 4z’ +o(x ))
163 1623
2 3 3 3
xjo4x -3 —I—O(x ) -3 —l—o(w )—I—o(m )
3223
— 2 _ 3
o 4z 3 +o0 (ac ) .
o Puisque u(z) ~ —2z, alors u(z)® ~ —8z® et donc u(x)® = —8z%+ 0 (a?).
T— z—0 z—0
° = — 3 3 = 3
Enfin, o (u(z)) o 0 (—8z% + 0 (2?)) =00 (z?).
D’on,
2 3
f(:E) mio o2 (1 n u(x) n u(;) n u(g) +o (u(x)?’))
= (1 -2z +8- —43 +o (2°)
1
—|—§[4x2 32313 +o (2°)]
1
+6[78x3 +o (2*)]
+o (u(z)?))
a:j() e2 —2e2 1+ #xz Em?’ +o0 (xg)
Conclusion,

5.5 On observe qu’au voisinage de 0,

1+m+m;01+1+§+ (1/2)(2—1/2)33%r (1/2)(—1é2)(—3/2)x3+O(x3)
11— g n (1/2)(2—1/2):62 _ (1/2)(—1?52)(—3/2)963

+o()
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Par suite,
1 1 1
f(z)

= ”1”—; +o0 (m3) Alors,

1 2 2\ Posons
Ona = o 14 u+u® + o (u?). Posons u(x) o

o u(x) = 0.

e De plus
2 22
o 5, (55 +0) (5 +06)
o0 ()
« Et o (u(z)?) o (o (2*)) o (z®).
Des lors,
f(x) o % (1+T—;+o(:c3) +0(x5) +0(:v3)> wi01+1—2+0
Conclusion,
22
fl@) = 1+ 5 +0 &)

11/11]

250 3 — 22 4 o(33) 220 31 — £ 4 o (23)



