

Interrogation 7 d'entrainement Fonctions usuelles

1. Restituer le cours.

- 1.1 Tracer le graphe de la fonction exponentielle / logarithme / cosinus hyperbolique / sinus hyperbolique /arccosinus / arcsinus / arctan, y faire apparaître les valeurs remarquables, les tangentes remarquables, les asymptotes remarquables.
- 1.2 Enoncer la croissance comparée du logarithme en $+\infty$ /en 0, de l'exponentielle en $-\infty$ /en $+\infty$.
- 1.3 Donner le domaine de dérivabilité et la dérivée de la fonction exponentielle / logarithme / cosinus hyperbolique / sinus hyperbolique / arccosinus / arctan.
- 1.4 Enoncer la formule reliant les carrés des fonctions hyperboliques et celle sur arctan.

Révisions

- 1.5 Définir l'image et l'image réciproque d'un ensemble par une fonction.
- 1.6 Comment obtient-on le graphe de $g_1: x \mapsto f(x) + a$? de $g_2: x \mapsto f(x+a)$? de $g_3: x \mapsto af(x)$? de $g_4: x \mapsto f(ax)$?
- 1.7 Définir une fonction paire ou impaire. Que dire de son graphe?
- 1.8 Définir une fonction croissante et une fonction strictement décroissante.
- 1.9 Définir une fonction majorée, minorée, bornée. Caractériser par la valeur absolue le fait qu'une fonction soit bornée.
- 1.10 Définir une fonction continue en a.
- 1.11 Enoncer le théorème des valeurs intermédiaires.
- 1.12 Définir une fonction dérivable en a. Quel est le lien entre continuité et dérivabilité?

2. Manipuler les fonctions logarithme et exponentielle.

- 2.1 Développer $\ln\left(\left(\sqrt{7}\right)^{3/2}\sqrt[5]{2}\right) + \ln\left(\left(\frac{16}{7^{1/3}}\right)^{3/4}\right)$.
- 2.2 Soit $n \in \mathbb{N}^*$. Développer $\ln \left(\sum_{k=1}^n 3^k \right)$.
- 2.3 Déterminer l'ensemble de définition de $f: x \mapsto \ln(2) + \ln(\tan(x)) \ln(1 + \tan(x)) \ln(1 \tan(x))$ puis factoriser f(x).
- 2.4 Déterminer le domaine de définition de $f: x \mapsto \ln\left(\frac{(4x-1)^{1/3}}{\sin^2(x)}\right)$ puis développer f(x).
- 2.5 Déterminer le domaine de définition de $f: x \mapsto \ln(\cosh(2x) 1)$ puis développer f(x).
- 2.6 Calculer $(e^2)^{4\ln(2)} ((e^{-3})^{\ln(2)})^2$.
- 2.7 Soit $x \in \mathbb{R}$. Calculer $\frac{\left(e^{\cos^2(x)} \frac{1}{e^{-\sin^2(x)}}\right)^7}{\left(e^{3^2}\right)^2}.$
- 2.8 Soit $n \in \mathbb{N}^*$. Calculer $\prod_{k=1}^n \frac{\left(\mathrm{e}^{k^2}\right)\left(\mathrm{e}^k\right)^2}{\mathrm{e}^{-1}}$.
- 2.9 Soit $n \in \mathbb{N}^*$. Calculer $\prod_{k=1}^n \left(\frac{\left(e^{(k+1)^2} \right)^3}{e^{3k^2}} \right)^{-2}$.

3. Calcul de limite.

- 3.1 Calculer $\lim_{\substack{x\to 0\\x\neq 0}} (1-x)^{1/x}$.
- 3.2 Calculer $\lim_{\substack{x \to 0 \\ x > 0}} \frac{2\arccos(x^x 1) \pi}{x^x 1}.$
- 3.3 Calculer $\lim_{\substack{x\to 0\\x>0}} \frac{1-\cos\left(x^3\ln(x)\right)}{x^6\ln^2(x)}$.

- 3.4 Calculer $\lim_{x \to +\infty} \frac{e^{3 + \log_2(x)}}{\arctan(x)x^2}$.
- 3.5 Calculer $\lim_{x \to +\infty} \frac{\cos(x)}{\sinh(x^3)}$
- 3.6 Calculer $\lim_{\substack{x\to 0\\x>0}} \frac{\operatorname{ch}\left(\frac{1}{x}\right)}{\operatorname{e}^{\frac{1}{x^2}}}.$

4. Simplification de fonctions.

- 4.1 Soit $f: x \mapsto \arctan\left(\frac{x}{x+1}\right) + \arctan\left(\frac{x}{x-1}\right) + \arctan 2x^2$. Déterminer \mathcal{D} le domaine de définition de f et simplifier f sur]-1;1[.
- 4.2 Soit $f: x \mapsto \arcsin\left(\sqrt{\frac{1+\sin(2x)}{2}}\right)$. Déterminer \mathcal{D} le domaine de définition de f et simplifier f sur $\left[-\frac{\pi}{4}; \frac{\pi}{4}\right]$.
- 4.3 Soit $f: x \mapsto \arcsin(\cos(x)) + \arccos(\sin(x))$. Déterminer \mathcal{D} le domaine de définition de f et simplifier f sur $\left[0; \frac{\pi}{2}\right]$.
- 4.4 Soit $f: x \mapsto \arccos(\cos(x)) + \frac{1}{2}\arccos(\cos(2x))$. Déterminer \mathcal{D} le domaine de définition de f et simplifier f sur $\left[-\frac{\pi}{2}; 0\right]$.
- 4.5 Soit $f: x \mapsto \arccos\left(\frac{1-x}{1+x}\right) 2\arctan\left(\sqrt{x}\right)$. Déterminer \mathcal{D} le domaine de définition de f et simplifier f sur \mathbb{R}_{\perp} .

5. Equations.

- 5.1 Résoudre dans \mathbb{R} , $2^{x+1} + 4^x = 15$.
- 5.2 Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. Résoudre dans $\mathbb{R} \log_a(x) = \log_x(a)$.
- 5.3 Résoudre dans \mathbb{R} , $2^{x^2} = 3^{x^3}$.
- 5.4 Résoudre dans \mathbb{R} , l'équation $(\arcsin(x) 5)\arcsin(x) = -4$.
- 5.5 Démontrer que l'équation $\arctan(x) + \arctan(x+1) = \frac{\pi}{4}$ admet au plus une solution et donner la valeur de l'unique réel possiblement solution.
- 5.6 Démontrer que l'équation $\arcsin(x) + \arcsin(x\sqrt{3}) = \frac{\pi}{2}$ admet au plus une solution et donner la valeur de l'unique réel possiblement solution.
- 5.7 Démontrer que l'équation $\arctan(3x) + \arctan(10x) = \frac{3\pi}{4}$ admet au plus une solution dans \mathbb{R} et préciser l'unique valeur du réel possiblement solution.
- 5.8 Résoudre dans \mathbb{R} l'équation (E): $\arctan(x) + \arctan(1-x) = \frac{\pi}{4}$.

6. BONUS (ne sera pas à l'interrogation) : dérivation.

- 6.1 Soient $a \in \mathbb{R}_+^* \setminus \{1\}$ et $f: x \mapsto \frac{\log_a(3x-1)}{2} \sqrt{x-5}$. Déterminer le domaine de dérivabilité de f puis dériver f.
- 6.2 Soient $a \in \mathbb{R}_+^* \setminus \{1\}$ et $f: x \mapsto \operatorname{ch}(2\log_a(\operatorname{sh}(2x)))$. Déterminer le domaine de dérivabilité de f puis dériver f.
- 6.3 Soit $f: x \mapsto \arcsin\left(\frac{1}{1+x^2}\right)$. Déterminer le domaine de dérivabilité de f puis dériver f.
- 6.4 Soient $a \in \mathbb{R}_+^* \setminus \{1\}$ et $f: x \mapsto \arctan\left(2\log_a\left(3x+4\right)\right)$. Déterminer le domaine de dérivabilité de f puis dériver f.
- 6.5 Soit $f: x \mapsto \frac{\arcsin(x)}{\arccos(x)}$. Déterminer le domaine de dérivabilité de f puis dériver f.