

Correction Automne 01 Bijection

Solution de l'exercice 1

1. Soit $x \in \mathbb{R}$. On a

$$f(x)$$
 existe \Leftrightarrow $x^2 - 4x + 5 \ge 0$.

Soit Δ le discriminant de $X^2 - 4X + 5$. On a

$$\Delta = 16 - 20 = -4 < 0.$$

Par conséquent, pour tout $x \in \mathbb{R}$, $x^2 - 4x + 5 > 0$. Conclusion,

la fonction
$$f$$
 est définie sur \mathbb{R} .

2. La fonction racine carrée n'est dérivable que sur \mathbb{R}_+^* . Cependant pour tout $x \in \mathbb{R}$, on a vu que $x^2 - 4x + 5 > 0$. Par conséquent la fonction f est dérivable sur \mathbb{R} .

Attention, la racine carrée posant un problème, il est insuffisant d'affirmer que f est dérivable sur \mathbb{R} comme composée de fonctions qui le sont.

De plus, pour tout $x \in \mathbb{R}$,

$$f'(x) = \frac{(x^2 - 4x + 5)'}{2\sqrt{x^2 - 4x + 5}} = \frac{2x - 4}{2\sqrt{x^2 - 4x + 5}} = \frac{x - 2}{\sqrt{x^2 - 4x + 5}}.$$

Puisque pour tout $x \in \mathbb{R}$, on a $\sqrt{x^2 - 4x + 5} > 0$, on en déduit que pour $x \in \mathbb{R}$, on a

$$f'(x) > 0$$
 \Leftrightarrow $x - 2 > 0$ \Leftrightarrow $x > 2$.

De même $f'(x) < 0 \Leftrightarrow x < 2$ et enfin $f'(x) = 0 \Leftrightarrow x = 2$. Ainsi, la fonction f est strictement croissante sur $[2; +\infty[$, et strictement décroissante sur $]-\infty; 2[$. De plus,

$$f(2) = \sqrt{4 - 8 + 5} = 1$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{x^2 - 4x + 5} = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{x^2 - 4x + 5} = +\infty.$$

Conclusion, on obtient le tableau de variation suivant :

x	$-\infty$		2		$+\infty$
f'(x)		_	0	+	
f(x)	$+\infty$		1		+∞

3. La fonction f est continue sur \mathbb{R} et par la question précédente strictement croissante sur $[2; +\infty[$. Par conséquent, la fonction g est continue et strictement croissante sur $[2; +\infty[$. Donc par le théorème de la bijection, on en déduit que

$$g$$
 est une bijection de $[2; +\infty[$ dans $[g(2); \lim_{x\to +\infty} g(x)[$ $= [1; +\infty[.$

De plus, toujours d'après le théorème de la bijection, sa réciproque, notée h est aussi continue et strictement croissante sur $[1; +\infty[$.

4. On sait que la fonction f est dérivable sur \mathbb{R} et donc sur $[2; +\infty[$. Donc la fonction g est dérivable sur $[2; +\infty[$ et

$$\forall x \in [2; +\infty[, \quad g'(x) = f'(x) = \frac{x-2}{\sqrt{x^2 - 4x + 5}}.$$

Nous avons déjà établi que $\forall x > 2$, $f'(x) \neq 0$ et que f'(2) = 0. Par conséquent, g est dérivable sur $]2; +\infty[$ et pour tout x > 2, $g'(x) \neq 0$. Ainsi,

- g est dérivable sur $]2; +\infty[$,
- g est strictement croissante sur $]2; +\infty[$;
- $\forall x \in]2; +\infty[, g'(x) \neq 0.$

D'après le théorème de la dérivabilité de la fonction réciproque, on en déduit que

$$h$$
 est dérivable sur $g(]2; +\infty[) =]1; +\infty[.$

On sait même que pour tout x > 2, $h'(x) = \frac{1}{g'(h(x))}$.

Enfin, f'(2) = 0 i.e. le graphe de f admet une tangente horizontale en 2. Par symétrie par rapport à la droite y = x, on en déduit que

le graphe de h admet une tangente verticale en 1.

5. Par définition de f,

$$f(4) = \sqrt{4^2 - 4 \times 4 + 5} = \sqrt{5}.$$

Donc $g(4) = \sqrt{5}$ et par suite,

$$h\left(\sqrt{5}\right) = 4.$$

Enfin, par la question précédente et le théorème de la dérivée de la fonction réciproque, pour tout x > 2,

$$h'(x) = \frac{1}{g'(h(x))}.$$

Or pour tout x > 2,

$$g'(x) = f'(x) = \frac{x-2}{\sqrt{x^2 - 4x + 5}} = \frac{x-2}{g(x)}.$$

Donc

$$h'(x) = \frac{g(h(x))}{h(x) - 2} = \frac{x}{h(x) - 2}.$$

Ainsi,

$$h'\left(\sqrt{5}\right) = \frac{\sqrt{5}}{h\left(\sqrt{5}\right) - 2} = \frac{\sqrt{5}}{4 - 2} = \frac{\sqrt{5}}{2}.$$

Conclusion,

$$h'\left(\sqrt{5}\right) = \frac{\sqrt{5}}{2}.$$

6. Soit $(x,y) \in [2; +\infty[\times [1; +\infty[$. On a les équivalences suivantes :

$$y = g(x) \qquad \Leftrightarrow \qquad y = \sqrt{x^2 - 4x + 5}$$

$$\Leftrightarrow \qquad y^2 = x^2 - 4x + 5 \qquad car \ y \geqslant 1 \geqslant 0 \ et \ x^2 - 4x + 5 \geqslant 0$$

$$\Leftrightarrow \qquad x^2 - 4x + 5 - y^2 = 0.$$

Considérons y comme un paramètre fixé et posons Δ le discriminant de $X^2 - 4X + 5 - y^2$. On a

$$\Delta = 16 - 4(5 - y^2) = 16 - 20 + 4y^2 = -4 + 4y^2 = 4(y^2 - 1)$$
.

Or $y \ge 1$ et donc $y^2 - 1 \ge 0$ i.e. $\Delta \ge 0$. Ainsi,

$$y = g(x)$$
 \Leftrightarrow $x = \frac{4 - \sqrt{4(y^2 - 1)}}{2} = 2 - \sqrt{y^2 - 1}$ OU $x = 2 + \sqrt{y^2 - 1}$.

Or $x \ge 2$. Si y = 1, alors y = g(x) admet une unique solution double : x = 2 et si y > 1, alors $2 - \sqrt{y^2 - 1} < 2 \le x$ et donc y = g(x) admet pour unique solution $x = 2 + \sqrt{y^2 - 1}$. Dans tous les cas,

$$y = g(x)$$
 \Leftrightarrow $x = 2 + \sqrt{y^2 - 1}$.

Conclusion,

$$\forall y \in [1; +\infty[, h(y) = 2 + \sqrt{y^2 - 1}.]$$