Théorèmes limites pour une marche Markovienne conditionnée à rester positive

Ronan LAUVERGNAT Université de Bretagne Sud

NANTES
28-30 OCTOBRE 2015
RENCONTRES DOCTORALES
LEBESGUE

ANNE VAUGON

- Introduction
 - De quoi parle-t-on?
 - Un modèle Markovien : la récursion stochastique
- Existence d'une fonction harmonique
 - Motivation
 - Résultat
 - Idées de la preuve
- 3 Les théorèmes limites
 - L'exemple brownien
 - Résultats

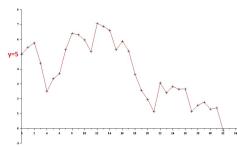
On se propose d'étudier une population de grenouilles.

- Soit y > 0 le nombre initial de grenouilles.
- Soit X_n la variable aléatoire réelle représentant l'accroissement de la population l'année n.

Le nombre total de grenouilles l'année n est alors notée

$$y + S_n := y + X_1 + \dots + X_{n-1} + X_n$$

= $y + S_{n-1} + X_n$.



Théorèmes limites pour une marche Markovienne conditionnée à rester positive

Puisque l'on souhaite décrire une population qui ne s'éteint pas, on considère le temps d'arrêt

$$\tau_y := \min \left\{ k \in \mathbb{N}^*, \ y + S_k \leqslant 0 \right\}.$$

Le fait que la population ait survécu jusqu'à l'instant n s'écrit

$${y + S_1 > 0, y + S_2 > 0, ..., y + S_n > 0} = {\tau_y > n}.$$

Théorèmes limites pour une marche Markovienne conditionnée à rester positive

On souhaite déterminer

d'une part la probabilité que la population survive :

$$\mathbb{P}\left(\tau_{y}>n\right)\underset{n\to+\infty}{\longrightarrow}???,$$

• et d'autre part la loi du nombre de grenouilles sachant que la population a survécue :

$$\mathscr{L}\left(\frac{y+S_n}{\sigma\sqrt{n}}\bigg|\tau_y>n\right)\underset{n\to+\infty}{\longrightarrow}???.$$

Théorèmes limites pour une marche Markovienne conditionnée à rester positive, cas indépendant

On suppose les accroissements $(X_n)_{n\geq 1}$ i.i.d. avec un moment d'ordre 2 :

$$0<\sigma^2=\mathbb{E}\left(X_1^2\right)<+\infty.$$

On suppose également la marche sans dérive :

$$\mathbb{E}(X_1)=0.$$

On suppose les accroissements $(X_n)_{n\geq 1}$ i.i.d. avec un moment d'ordre 2 :

$$0<\sigma^2=\mathbb{E}\left(X_1^2\right)<+\infty.$$

On suppose également la marche sans dérive :

$$\mathbb{E}(X_1)=0.$$

Théorème (temps de sortie) [Spitzer, 1960]

Pour tout y > 0, il existe une constante V(y) > 0 telle que

$$\mathbb{P}(\tau_y > n) \underset{n \to +\infty}{\sim} \frac{2V(y)}{\sigma\sqrt{2\pi n}}$$

Théorème (loi limite de la marche conditionnée) [Iglehart, 1974]

Pour tout y > 0 et t > 0,

$$\lim_{n \to +\infty} \mathbb{P}\left(\frac{y + S_n}{\sigma \sqrt{n}} \leqslant t \,\middle|\, \tau_y > n\right) = 1 - e^{-\frac{t^2}{2}} \quad \text{(loi de Rayleigh)}.$$

Le nombre de départs et d'arrivées des grenouilles l'année n+1 dépend de celui de l'année n de la façon suivante : pour tout $n \in \mathbb{N}$,

$$X_{n+1} = a_{n+1}X_n + b_{n+1},$$

où les $(a_i, b_i)_{i\geqslant 1}$ sont i.i.d.

La suite
$$(X_n)_{n\in\mathbb{N}}$$
 est une chaîne de Markov et $y+S_n=y+X_1+\cdots+X_n$ est alors une marche Markovienne.

On notera $x \in \mathbb{R}$ le point de départ de cette chaîne de Markov et \mathbb{P}_x (resp. \mathbb{E}_x) la probabilité (resp. l'espérance) sachant

$$X_0 = x$$
 p.s.

On suppose notamment les hypothèses suivantes.

Condition 1 : contraction de la dépendance et centrage

• Il existe $\alpha > 2$ tel que

$$\mathbb{E}\left(\left|a\right|^{lpha}
ight)<1\qquad \mathbb{E}\left(\left|b\right|^{lpha}
ight)<+\infty.$$

De plus

$$\mathbb{E}(b) = 0.$$

Alors la chaîne de Markov

$$X_n = \prod_{i=1}^n a_i x + \sum_{k=1}^n b_k \prod_{i=k+1}^n a_i,$$

possède une unique mesure invariante ν de loi celle de

$$Z = \sum_{k=1}^{+\infty} b_k \prod_{i=1}^{k-1} a_i.$$

La récursion stochastique

On suppose notamment les hypothèses suivantes.

Condition 1 : contraction de la dépendance et centrage

• Il existe $\alpha > 2$ tel que

$$\mathbb{E}\left(\left|a\right|^{lpha}
ight)<1\qquad \mathbb{E}\left(\left|b\right|^{lpha}
ight)<+\infty.$$

De plus

$$\mathbb{E}(b)=0.$$

La loi ν est centrée et admet des moments d'ordre $\alpha > 2$:

$$\int_{\mathbb{R}} x \nu(\mathsf{d}x) = \mathbb{E}\left(\sum_{k=1}^{+\infty} b_k \prod_{i=1}^{k-1} a_i\right) = 0$$

$$\int_{\mathbb{R}} |x|^{\alpha} \nu(\mathsf{d}x) = \mathbb{E}\left(\left|\sum_{k=1}^{+\infty} b_k \prod_{i=1}^{k-1} a_i\right|^{\alpha}\right) < \infty$$

La marche Markovienne non conditionnée

Théorème (loi limite de la marche) [Guivarc'h, Le Page, 2008]

La marche Markovienne issue de la récursion stochastique renormalisée converge en loi vers la loi normale centrée réduite : il existe $\sigma > 0$ telle que pour tout $x \in \mathbb{R}$, $y \in \mathbb{R}$ et $t \in \mathbb{R}$,

$$\lim_{n\to+\infty}\mathbb{P}_{\mathsf{x}}\left(\frac{\mathsf{y}+\mathsf{S}_n}{\sigma\sqrt{n}}\leqslant t\right)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^t e^{-s^2/2}\,\mathsf{d}s.$$

La marche Markovienne non conditionnée

Théorème (loi limite de la marche) [Guivarc'h, Le Page, 2008]

La marche Markovienne issue de la récursion stochastique renormalisée converge en loi vers la loi normale centrée réduite :

il existe
$$\sigma > 0$$
 telle que pour tout $x \in \mathbb{R}$, $y \in \mathbb{R}$ et $t \in \mathbb{R}$,

$$\lim_{n\to+\infty}\mathbb{P}_{\mathsf{x}}\left(\frac{\mathsf{y}+\mathsf{S}_n}{\sigma\sqrt{n}}\leqslant t\right)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^t e^{-\mathsf{s}^2/2}\,\mathsf{d}\mathsf{s}.$$

•
$$\mathbb{P}\left(\tau_{y}>n\right)\underset{n\to+\infty}{\longrightarrow}???$$
,

•
$$\mathscr{L}\left(\frac{y+S_n}{\sigma\sqrt{n}} \mid \tau_y > n\right) \xrightarrow[n \to +\infty]{???}$$
.

- Introduction
 - De quoi parle-t-on?
 - Un modèle Markovien : la récursion stochastique
- Existence d'une fonction harmonique
 - Motivation
 - Résultat
 - Idées de la preuve
- 3 Les théorèmes limites
 - L'exemple brownien
 - Résultats

Une fonction harmonique pour positiver

• La suite $(X_n, y + S_n)_{n \geqslant 0}$ est une chaîne de Markov. Notons $\mathbf{Q}(x, y, .)$ son noyau : $\forall (x, y) \in \mathbb{R} \times \mathbb{R}$ et $\forall (A, B) \in \mathcal{B}(\mathbb{R})^2$,

$$\mathbf{Q}(x,y,A\times B)=\mathbb{P}_{x}\left(X_{1}\in A,y+S_{1}\in B\right).$$

• Afin de ne considérer que les trajectoires positives, on définit la restriction de $\mathbf{Q}(x,y,.)$ aux ensembles mesurables de $\mathbb{R} \times \mathbb{R}_+^*$

$$\mathbf{Q}_{+}(x,y,.) := \mathbf{Q}(x,y,.)|_{\mathbb{R} \times \mathbb{R}_{+}^{*}}.$$

• Cette mesure n'étant plus une probabilité, $\mathbf{Q}_+(x,y,\mathbb{R}\times\mathbb{R}_+^*)<1$, on souhaite renormaliser \mathbf{Q}_+ .

Définition

On dit qu'une fonction $V: \mathbb{R} \times \mathbb{R}_+^* \to \mathbb{R}$ est harmonique si pour tout $x \in \mathbb{R}$ et tout y > 0,

$$\begin{aligned} \mathbf{Q}_{+}V(x,y) &= \int_{\mathbb{R}\times\mathbb{R}_{+}^{*}} V(x',y') \mathbf{Q}_{+}(x,y,\mathrm{d}x'\times\mathrm{d}y') \\ &= \int_{\mathbb{R}\times\mathbb{R}_{+}^{*}} V(x',y') \mathbb{P}_{x}\left(X_{1}\in\mathrm{d}x'\,;\,y+S_{1}\in\mathrm{d}y'\right) \\ &= V(x,y). \end{aligned}$$

Si de plus l'on suppose V>0 sur $\mathbb{R}\times\mathbb{R}_+^*$, alors, pour tout $(x,y)\in\mathbb{R}\times\mathbb{R}_+^*$, on définit $\overline{\mathbf{Q}}_+(x,y,.)$ par, pour tout B Borélien de $\mathbb{R}\times\mathbb{R}_+^*$,

$$\overline{\mathbf{Q}}_{+}(x,y,B) := \frac{1}{V(x,y)}(\mathbf{Q}_{+}V)(x,y,B)$$

$$= \frac{1}{V(x,y)} \int_{B} V(x',y') \mathbf{Q}_{+}(x,y,dx'\times dy').$$

Définition

On dit qu'une fonction $V: \mathbb{R} \times \mathbb{R}_+^* \to \mathbb{R}$ est harmonique si pour tout $x \in \mathbb{R}$ et tout y > 0,

$$\begin{aligned} \mathbf{Q}_{+}V(x,y) &= \int_{\mathbb{R}\times\mathbb{R}_{+}^{*}} V(x',y') \mathbf{Q}_{+}(x,y,\mathsf{d}x'\times\mathsf{d}y') \\ &= \int_{\mathbb{R}\times\mathbb{R}_{+}^{*}} V(x',y') \mathbb{P}_{x}\left(X_{1}\in\mathsf{d}x'\,;\,y+S_{1}\in\mathsf{d}y'\right) \\ &= V(x,y). \end{aligned}$$

L'opérateur $\overline{\mathbf{Q}}_+$ est alors bien un noyau Markovien,

$$\overline{\mathbf{Q}}_+(x,y,\mathbb{R}\times\mathbb{R}_+^*) = \frac{1}{V(x,y)}\int_{\mathbb{R}\times\mathbb{R}_+^*} V(x',y') \mathbf{Q}_+(x,y,\mathrm{d} x'\times\mathrm{d} y') = 1.$$

Un volontaire pour être harmonique?

Définition

On dit qu'une fonction $V: \mathbb{R} \times \mathbb{R}_+^* \to \mathbb{R}$ est harmonique si pour tout $x \in \mathbb{R}$ et tout y > 0,

$$\begin{aligned} \mathbf{Q}_{+}V(x,y) &= \mathbb{E}_{x}\left(V(X_{1},y+S_{1}); y+S_{1}>0\right) \\ &= \mathbb{E}_{x}\left(V(X_{1},y+S_{1}); \tau_{y}>1\right) \\ &= V(x,y). \end{aligned}$$

Considérons

$$V_n(x,y) = \mathbb{E}_x (y + S_n; \tau_y > n).$$

Par la propriété de Markov, on a

$$V_{n+1}(x,y) = \mathbb{E}_{x} (\mathbb{E}_{x} (y + S_{n+1}; \tau_{y} > n+1 | F_{1}))$$

= $\mathbb{E}_{x} (V_{n} (X_{1}, y + S_{1}); \tau_{y} > 1).$

Existence d'une fonction harmonique

Théorème (Existence d'une fonction harmonique)

• Pour tout $x \in \mathbb{R}$ et tout y > 0, la limite suivante existe et est finie,

$$V(x,y) := \lim_{n \to +\infty} \mathbb{E}_x \left(y + S_n; \, \tau_y > n \right) < +\infty.$$

- **2** La fonction V est \mathbf{Q}_+ -harmonique.
- **3** La fonction V est strictement positive sur $\mathbb{R} \times \mathbb{R}_+^*$.

Considérons

$$V_n(x,y) = \mathbb{E}_x (y + S_n; \tau_y > n).$$

Par la propriété de Markov, on a

$$\begin{aligned} V_{n+1}(x,y) &= \mathbb{E}_{x} \left(\mathbb{E}_{x} \left(y + S_{n+1} ; \, \tau_{y} > n+1 \, \mid F_{1} \right) \right) \\ &= \mathbb{E}_{x} \left(V_{n} \left(X_{1}, y + S_{1} \right) ; \, \tau_{y} > 1 \right). \end{aligned}$$

Etape 1 : approximation par une martingale

En notant $z:=y+\frac{\mathbb{E}(a)}{1-\mathbb{E}(a)}x$, on décompose $y+S_n$ de la façon suivante :

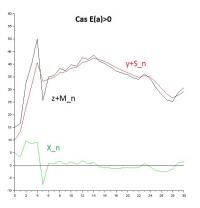
$$y + S_n = \underbrace{y + S_n + \frac{\mathbb{E}(a)}{1 - \mathbb{E}(a)} X_n}_{=:z + M_n} - \underbrace{\frac{\mathbb{E}(a)}{1 - \mathbb{E}(a)} X_n}_{=:\text{terme reste}}.$$

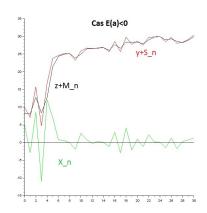
Lemme 1

- Le processus $(z + M_n)_{n \ge 0}$ est une martingale de moyenne z.
- Sous réserve que l'une des deux limites existe,

$$V(x,y) = \lim_{n \to +\infty} \mathbb{E}_{x} \left(z + M_{n}; \, \tau_{y} > n \right) = \lim_{n \to +\infty} \mathbb{E}_{x} \left(y + S_{n}; \, \tau_{y} > n \right).$$

Etape 1: approximation par une martingale





$$X_{n+1} = a_{n+1}X_n + b_{n+1}, \quad y + S_n = y + X_1 + \dots + X_n$$

$$z + M_n = y + S_n + \frac{\mathbb{E}(a)}{1 - \mathbb{E}(a)}X_n$$

Etape 2 : un premier majorant d'ordre $n^{1/2-\epsilon}$

Lemme 2

Il existe $\epsilon_0>0$ tel que pour tout $\epsilon\in]0$; $\epsilon_0[$, $x\in\mathbb{R}$, y>0 et $n\in\mathbb{N}$, avec $z=y+\mathbb{E}(a)x/(1-\mathbb{E}(a))$, on a

$$\mathbb{E}_{x}\left(z+M_{n};\,\tau_{y}>n\right)\leqslant z+c\left|x\right|+cn^{1/2-2\epsilon}.$$

Idée de la preuve :

Par un petit calcul, en utilisant la propriété de martingale, on se ramène au temps de sortie τ_y :

$$\mathbb{E}_{x}(z + M_{n}; \tau_{y} > n) = \mathbb{E}_{x}(z + M_{n}) - \mathbb{E}_{x}(z + M_{n}; \tau_{y} \leqslant n)$$

$$= z - \mathbb{E}_{x}(\mathbb{E}(z + M_{n}; \tau_{y} \leqslant n \mid \mathscr{F}_{\tau_{y}}))$$

$$= z - \mathbb{E}_{x}(z + M_{\tau_{y}}; \tau_{y} \leqslant n).$$

Lemme 2

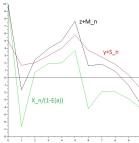
Il existe $\epsilon_0 > 0$ tel que pour tout $\epsilon \in]0$; $\epsilon_0[$, $x \in \mathbb{R}$, y > 0 et $n \in \mathbb{N}$, on a

$$\mathbb{E}_{x}\left(z+M_{n};\,\tau_{v}>n\right)\leqslant z+c\left|x\right|+cn^{1/2-2\epsilon}.$$

Au temps τ_{y} , nous avons,

$$z + M_{\tau_y} = y + S_{\tau_y} + \frac{\mathbb{E}(a)}{1 - \mathbb{E}(a)} X_{\tau_y} < 0$$

= $y + S_{\tau_y - 1} + \frac{1}{1 - \mathbb{E}(a)} X_{\tau_y} > \frac{1}{1 - \mathbb{E}(a)} X_{\tau_y}.$



Lemme 2

Il existe $\epsilon_0>0$ tel que pour tout $\epsilon\in]0;\epsilon_0[$, $x\in\mathbb{R}$, y>0 et $n\in\mathbb{N}$, on a

$$\mathbb{E}_{x}\left(z+M_{n};\,\tau_{y}>n\right)\leqslant z+c\left|x\right|+cn^{1/2-2\epsilon}.$$

Idée de la preuve :

Par un petit calcul, en utilisant la propriété de martingale, on se ramène au temps de sortie τ_y :

$$\mathbb{E}_{x} (z + M_{n}; \tau_{y} > n) = \mathbb{E}_{x} (z + M_{n}) - \mathbb{E}_{x} (z + M_{n}; \tau_{y} \leqslant n)$$

$$= z - \mathbb{E}_{x} (\mathbb{E} (z + M_{n}; \tau_{y} \leqslant n | \mathscr{F}_{\tau_{y}}))$$

$$= z - \mathbb{E}_{x} (z + M_{\tau_{y}}; \tau_{y} \leqslant n)$$

$$\leqslant z + \mathbb{E}_{x} (|X_{\tau_{y}}|; \tau_{y} \leqslant n).$$

Etape 3 : un majorant uniforme

Lemme 2

Il existe $\epsilon_0 > 0$ tel que pour tout $\epsilon \in]0; \epsilon_0[$, $x \in \mathbb{R}$, y > 0 et $n \in \mathbb{N}$, on a

$$\mathbb{E}_{x}\left(z+M_{n};\,\tau_{y}>n\right)\leqslant z+c\left|x\right|+cn^{1/2-2\epsilon}.$$

• Si $z = y + \frac{\mathbb{E}(a)}{1 - \mathbb{E}(a)} x > n^{1/2 - \epsilon}$, alors immédiatement,

$$\mathbb{E}_{x}\left(z+M_{n};\,\tau_{y}>n\right)\leqslant2z+c\left|x\right|.$$

• Si $z \leqslant n^{1/2-\epsilon}$ on attend que $z+M_n$ devienne plus grand que $n^{1/2-\epsilon}$.

Etape 3 : un majorant uniforme

Lemme 2

Il existe $\epsilon_0 > 0$ tel que pour tout $\epsilon \in]0; \epsilon_0[$, $x \in \mathbb{R}$, y > 0 et $n \in \mathbb{N}$, on a

$$\mathbb{E}_{x}\left(z+M_{n};\,\tau_{y}>n\right)\leqslant z+c\left|x\right|+cn^{1/2-2\epsilon}.$$

• Si $z = y + \frac{\mathbb{E}(a)}{1 - \mathbb{E}(a)} x > n^{1/2 - \epsilon}$, alors immédiatement,

$$\mathbb{E}_{x}\left(z+M_{n};\,\tau_{y}>n\right)\leqslant2z+c\left|x\right|.$$

• Si $z \leqslant n^{1/2-\epsilon}$ on attend que $z+M_n$ devienne plus grand que $n^{1/2-\epsilon}$.

Proposition

Pour tout $p \in]2$; $\alpha[$, $x \in \mathbb{R}$, y > 0 et $n \in \mathbb{N}$, on a

$$\mathbb{E}_{x}(z+M_{n}; \tau_{y}>n) \leqslant c_{p}(1+y+|x|)(1+|x|)^{p-1}.$$

Conclusion de l'existence

Théorème (Existence d'une fonction harmonique)

• Pour tout $x \in \mathbb{R}$ et tout y > 0, la limite suivante existe et est finie,

$$V(x,y) := \lim_{n \to +\infty} \mathbb{E}_{x} (y + S_{n}; \tau_{y} > n)$$

=
$$\lim_{n \to +\infty} \mathbb{E}_{x} (z + M_{n}; \tau_{y} > n) < +\infty.$$

- **2** La fonction V est \mathbf{Q}_+ -harmonique.
- **3** La fonction V est strictement positive sur $\mathbb{R} \times \mathbb{R}_+^*$.

- Introduction
 - De quoi parle-t-on?
 - Un modèle Markovien : la récursion stochastique
- Existence d'une fonction harmonique
 - Motivation
 - Résultat
 - Idées de la preuve
- 1 Les théorèmes limites
 - L'exemple brownien
 - Résultats

L'exemple brownien

On pose

$$\tau_y^{bm} = \min\{t \geqslant 0, \ y + \sigma B_t \leqslant 0\},\$$

Proposition (temps de sortie) [Lévy, 1954]

Pour tout y > 0 et $n \ge 1$,

$$\mathbb{P}\left(\tau_y^{bm} > n\right) = \frac{2}{\sqrt{2\pi n}\sigma} \int_0^y e^{-\frac{t^2}{2n\sigma^2}} dt.$$

Notamment,

$$\mathbb{P}\left(\tau_{y}^{bm}>n\right)\underset{n\to+\infty}{\sim}\frac{2y}{\sqrt{2\pi n\sigma}}.$$

L'exemple brownien

On pose

$$\tau_y^{bm} = \min\{t \geqslant 0, \ y + \sigma B_t \leqslant 0\},\$$

Proposition (loi limite conditionnelle) [Lévy, 1954]

Pour tout y > 0, $n \ge 1$ et t > 0,

$$\mathbb{P}\left(\frac{y+\sigma B_n}{\sqrt{n}}\leqslant t\,;\,\tau_y^{bm}>n\right)=\frac{1}{\sqrt{2\pi n}\sigma}\int_0^{t\sqrt{n}}e^{-\frac{(s-y)^2}{2n\sigma^2}}-e^{-\frac{(s+y)^2}{2n\sigma^2}}ds.$$

Notamment,

$$\mathbb{P}\left(\frac{y+\sigma B_n}{\sqrt{n}}\leqslant t \,\middle|\, \tau_y^{bm}>n\right) \underset{n\to+\infty}{\longrightarrow} 1-\mathrm{e}^{-\frac{t^2}{2\sigma^2}}\,.$$

Approximation de la marche par le mouvement Brownien

Théorème [Grama, Le Page, Peigné, 2014]

Pour tout $p \in]2; \alpha[$, il existe $\epsilon_0 > 0$ tel que pour tout $\epsilon \in]0, \epsilon_0[$, $x \in \mathbb{R}$ et $n \geqslant 1$,

$$\mathbb{P}_{x}\left(\sup_{1\geqslant k\geqslant n}\left|S_{k}-\sigma B_{k}\right|>n^{1/2-\epsilon}\right)\leqslant\frac{c_{p,\epsilon}\left(1+\left|x\right|^{p}\right)}{n^{\epsilon}}.$$

- A nouveau lorsque le point de départ $y > n^{1/2-\epsilon}$, on est capable d'approcher la marche par le Brownien.
- Lorsque y est quelconque, on se place par la propriété de Markov au temps

$$\nu_n := \min\{k \geqslant 1, |y + S_k| > n^{1/2 - \epsilon}\}.$$

La difficulté du cas Markovien

$$\nu_n := \min\{k \geqslant 1, |y + S_k| > n^{1/2 - \epsilon}\}$$

Par la propriété de Markov,

$$\begin{split} &\mathbb{E}_{x}\left(y+S_{n};\,\tau_{y}>n\right) \\ &\leqslant \mathbb{E}_{x}\left(y+S_{n};\,\tau_{y}>n\,,\,\nu_{n}\leqslant n^{1-\epsilon}\right)+\frac{c_{p}(x,y)}{n^{\epsilon}} \\ &=\mathbb{E}_{x}\left(\mathbb{E}_{x'=X_{\nu_{n}}}\left(y'+S_{n-\nu_{n}};\,\tau_{y'}>n-\nu_{n}\right)\,,\,\nu_{n}\leqslant n^{1-\epsilon}\right)+\frac{c_{p}(x,y)}{n^{\epsilon}}. \end{split}$$

- Problème : lorsque les accroissements sont markoviens, un terme reste en X_{ν_n} n'admet pas de majorant simple a priori.
- Astuce : exploiter la décroissance exponentielle de la dépendance dans le passé de la chaîne $(X_n)_{n\in\mathbb{N}}$:

Pour tout $x \in \mathbb{R}$, $n \in \mathbb{N}$.

$$\mathbb{E}_{\mathbf{x}}(|X_n|) = \mathbb{E}_{\mathbf{x}}\left(\left|\prod_{i=1}^n a_i \mathbf{x} + \sum_{k=1}^n b_k \prod_{i=k+1}^n a_i\right|\right)$$

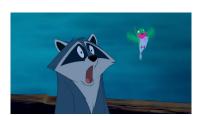
$$\leq \mathbb{E}(\mathbf{a})^n \mathbf{x} + \mathbf{c} = \mathbf{e}^{-cn} \mathbf{x} + \mathbf{c}.$$

Asymptotique du temps de sortie

Théorème (temps de sortie)

Il existe $\sigma > 0$ tel que pour tout $x \in \mathbb{R}$ et tout y > 0,

$$\mathbb{P}_{\mathsf{x}}(\tau_{\mathsf{y}} > n) \underset{n \to +\infty}{\sim} \frac{2V(\mathsf{x}, \mathsf{y})}{\sigma\sqrt{2\pi n}}.$$



Loi asymptotique de la marche conditionnée

Théorème (loi limite de la marche conditionnée)

Pour tout $x \in \mathbb{R}$, tout y > 0 et tout t > 0,

$$\lim_{n\to +\infty} \mathbb{P}_{\scriptscriptstyle X} \left(\frac{y+S_n}{\sigma \sqrt{n}} \leqslant t \, \bigg| \, \tau_y > n \right) = 1 - e^{-\frac{t^2}{2}} \quad \text{(loi de Rayleigh)}.$$



- IGLEHART, D. (1974). Functional Central Limit Theorems for Random Walks Conditioned to Stay Positive. The Annals of Probability.
- DENISOV, D. AND WACHTEL, V. (2010). Conditional limit theorems for ordered random walks. Electron. J. Probab.
- GUIVARC'H, Y. AND LE PAGE, E. (2008). On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks. Ergodic Theory and Dynamical Systems.
- GRAMA, I., LE PAGE, E. AND PEIGNÉ, M. (2014). On the rate of convergence in the weak invariance principle for dependant random variables with applications to Markov chains. Colloquim Mathematicum.

Perspectives

• Travailler la dimension supérieure, avec A_{n+1} et B_{n+1} des matrices aléatoires,

$$X_{n+1} = A_{n+1}X_n + B_{n+1}.$$

• Théorème fonctionnel, type Donsker : l'interpolation de la marche ramenée à l'intervalle [0,1], $\mathbf{S}_n(t) = \frac{y + S_{[nt]}}{\sigma \sqrt{n}}$, converge en loi vers le méandre brownien.

 Généraliser à toutes chaînes de Markov possédant une décroissance exponentielle en moyenne,

$$\mathbb{E}_{x}\left(|f(X_{n})|\right)\leqslant \mathrm{e}^{-cn}\,N(x)+c.$$

Merci!

